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Abstract.Abstract.Abstract. Probability distributions for carbon burning, atmospheric CO2, and global
average temperature are produced by time series calibration of models of utility op-
timization and carbon and heat balance using log-linear production functions. Pop-
ulation growth is used to calibrate a logistically evolving index of development that
influences production efficiency. Energy production efficiency also includes a coeffi-
cient that decreases linearly with decreasing carbon intensity of energy production.
This carbon intensity is a piecewise linear function of fossil carbon depletion. That
function is calibrated against historical data and extrapolated by sampling a set of hy-
potheses about the impact on the carbon intensity of energy production of depleting
fluid fossil fuel resources and increasing cumulative carbon emissions. Atmospheric
carbon balance is determined by a first order differential equation with carbon use
rates and cumulative carbon use as drivers. Atmospheric CO2 is a driver in a simi-
lar heat balance. Periodic corrections are included where required to make residuals
between data and model results indistinguishable from independently and identically
distributed normal distributions according to statistical tests on finite Fourier power
spectrum amplitudes and nearest neighbor correlations. Asymptotic approach to a
sustainable non-fossil energy production is followed for a global disaggregation into a
tropical/developing and temperate/more-developed region. The increase in the uncer-
tainty of global average temperature increases nearly quadratically with the increase
in the temperature from the present through the next two centuries.



1. Introduction1. Introduction1. Introduction

Uncertainty about how fossil carbon use will drive global climate change compli-
cates many aspects of long-term land use planning at the regional and national
levels around the world. There is thus considerable interest in probability distri-
butions for the actual outcome (c.f. Giorgi and Francisco, 2000; Andronova and
Schlesinger, 2001; Forest et al., 2002; Webster et al., 2002; Dessai and Hulme,
2003; Dessai and Hulme, 2004; Mastrandrea and Schneider, 2004; Murphy et
al., 2004; Richels et al., 2004; Kriegler, 2005; Giorgi, 2005; Stainforth et al.,
2005). There has been a particular emphasis in very recent literature on de-
veloping probability distributions for climate response to emissions scenarios
(Collins et al., 2006; Dettinger, 2006; Greene et al., 2006; Raisanen and Ruoko-
lainen, 2006). Accomplishing this in a way that is systematically connected to
time-series data has long been known to be a challenging exercise (c.f. Chapter
5 of Nordhaus, 1994). Probability distributions rather than definitive predic-
tions are the best that can be expected, given uncertainties in the future of
carbon use and atmospheric response. An alternate approach is to bracket the
most likely actual outcome with scenarios such as “business as usual” vs. “opti-
mal response” with the aim of contrasting the possible benefits of international
cooperation on limiting atmospheric carbon accumulation with the dangers of
failing to do so. Such scenario building requires self consistent models, but not
necessarily the type of systematic statistical analysis undertaken here to support
outcome probability distributions.

With respect to the impact of uncertainties about future greenhouse gas
emissions, an ambitious previous effort at estimating “uncertainty in emissions
projections for climate models” is described in paper of that title by Webster
et al. (2002). That work explores the implications of uncertainties about a
measure of the energy intensity of economic production, productivity growth,
and seven classes of greenhouse gases, for twelve different geographical regions.
In that case probability distributions for the values of the macroeconomic pa-
rameters were obtained by surveys of expert assessment rather than directly
by time-series analysis using historical data. Desai and Hulme (2004) subse-
quently uniformly sampled carbon emissions scenarios to support calculation of
cumulative probability distributions for changes in global average temperature.
Richels et al. (2004) nonuniformly sampled a similar set of scenarios towards
much the same end. Also relying on a survey of expert opinion, Mastrandrea
and Schneider (2004) aimed at a probabilistic assessment similar to that done
in the present paper. Their work references the original DICE model (Nord-
haus, 1992). In that model all capital and labor is assigned to a single GDP
production function in a globally aggregated model, and the carbon intensity
of energy production is an assigned function of time rather than a function of
cumulative carbon use.

The work described in the present paper illustrates a different method to
complement the samplings of expert input used in the above-mentioned stud-
ies. The method described here uses time-series data to calibrate probability
distributions for global average temperature change based on econometric and
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physical models of the use of fossil carbon and its influence on the atmosphere.
The primary emphasis is on carbon emissions econometrics, with very simple
atmospheric carbon and heat balance models appended merely to illustrate the
use of the more complete econometric results. Thus the probability distribu-
tions developed here for global average temperature increase do not include a
large number of a priori uncertain parameters found in more complete analyses.
The result is that range of atmospheric carbon and global average temperatures
in the central ninety-five centiles of random samples found here is expected
to be a lower bound on what a more complete study using the same type of
methodology would produce.

Time-series analysis is used here because this is needed for data to con-
strain model projection probabilities in the most useful way (c.f. Verbecke and
De Clercq, 2006). The reason for this is that historical time series reveal deeply
ingrained patterns in the evolution of economic production and energy use that
seem to have been difficult to dislodge except through rare and major socioeco-
nomic transformations. Examples of such major transformations are the transi-
tion to lower mortality and fertility rates and the widespread use of fossil fuels
that followed the Napoleonic Wars and the invention of an efficient steam engine.
Deeply ingrained patterns of economic development are evident in plots of the
nearly two orders of magnitude increase in per capita gross domestic product
(GDP) on a logarithmic scale versus time from 1870 (as on pp. 333–334 in Barro
and Sala-i-Martin, 1995). Persistent patterns are also evident on a shorter but
still significant timescale on the plots of carbon intensity of energy use versus
cumulative fossil carbon use shown below in Figure 4.

An alternative sometimes used to avoid systematic calibration against longer
time series is constraining models to match values and rates of change of ob-
servations near a single recent reference time. This approach can be useful for
scenario building. However this simpler “point and slope” approach does not
make full use of data available for constraint of probability distributions for
model parameters. This is particularly the case when there are periodic os-
cillations around background evolutionary trends, as in some of the data sets
used here. In cases where periodic variations around background trends are
important, e.g. as is well known to be the case for GDP over business cycles, ex-
trapolation results can vary considerably when time-rates-of-change over shorter
intervals are used instead of calibration against extended time-series data for
setting modeling parameters.

If the theoretical framework chosen is robust enough and the data manage-
ment is sufficiently flexible, as is the case here, then it should be possible to
generalize the kind of top-level analysis done here to greater levels of disaggre-
gation and longer time spans without moving outside the range of applicability.
To this end a dynamic utility optimization approach is used that is somewhat
similar to that of Manne and colleagues (Manne et al., 1995; Manne, 2006),
following on from Nordhaus (1993 and 1994) and Tol (1994). The potential
advantages of systematically calibrating and sampling probability distributions
for essentially all of the parameters in a model when extrapolating future en-
ergy use and carbon emissions is counterbalanced by the considerable difficulty
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of doing this in such a way that the residuals between the results of the model
and an extensive data set are consistent with a tractable statistical model. To
make this more manageable within the scope of the present study, only two
economic production sectors in two grouped sets of countries are included, as
described in detail below. However, the solution approach used is unrestricted
in the time period it can cover and the time resolution that can be efficiently
obtained. Moreover, the economic model used has been formulated in a way
that can readily be generalized to include more detail on production sectors,
and database construction and data aggregation methods have been developed
so that any desired sets of countries can automatically be grouped together for
analysis.

The data used include annual estimates of population and GDP for 1950–
2001 from Maddison (2001). Also used are time series for 1950–2001 from the
United Nations for nine different energy sources (UNSD, 2005) from 220 different
geographic areas. PERL language coding for extracting the required informa-
tion from the UN database is included in CD-ROM format in a PhD thesis by
Rethinaraj (2005). These energy sources include fossil fuels in the forms of coal,
oil, natural gas. They also include the fossil fuel energy equivalent of electrical
power at a reference thirty-eight percent thermal to electric conversion efficiency
for use of hydropower, geothermal energy, tides, nuclear energy, wind, and solar
thermal energy to generate electricity. The range of data used and the number
of years each type is averaged over are indicated by the data points on the figures
given below. Carbon released to the atmosphere per exajoule of energy obtained
from burning coal is estimated at 0.0255 billion metric tonnes (Gtonne). Oil
and natural gas are estimated respectively to release 0.745 and 0.54 times as
much carbon per unit energy as coal. For fitting data on carbon intensity of
energy production as a function of cumulative carbon use, estimates of the use
of coal, oil, and natural gas before 1950 are needed. From 1925 through 1949
these are taken from Darmstadter (1971). Earlier data are from Mitchell (2003)
and from Etemad and Luciani (1991), drawing on the electronic formatting of
Goldewijk (2004). Time-series data for atmospheric carbon dioxide are from
Keeling and Whorf (2004) and for global average temperature from Jones et
al. (2001). A more complete description of the methods used for extracting and
regionally aggregating the data is available as a research report in electronic
format (Rethinaraj, 2005).

To facilitate generalization of the present approach to more complete anal-
yses, a particular goal is transparency of the formulas and methods used. An
overview of the approach used is given in the following few paragraphs, and
details are provided in the subsequent sections of the main text and in the
Appendix section.

Subject to the constraint of an overall evolving total labor supply, labor
and capital are dynamically allocated to primary energy and final consumables
production and investment in order to maximize the total time-integrated dis-
counted utility of per capita consumption. The efficiency of primary energy
production depends on the amount of carbon consumed per unit of primary en-
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ergy production (hereafter “carbon intensity”), and primary energy production
is an essential input to increases in overall economic production.

For the examples shown here, only two aggregate regions are used. These
include a “temperate and more developed” region and a “tropical/developing”
region. The temperate region includes all UN geographical data units any part
of which lies poleward of forty degrees latitude. (This includes all separately
administered portions of China and Korea, and Puerto Rico with the United
States). Everything else is in what for brevity is called the tropical region.
With this division a simple logistic model of the growth of populations over
their pre-industrial base levels is remarkably adequate.

It is useful to note that increasing levels of economic development broadly
correlate with decrease in population growth rates, at least at the level of aggre-
gation used here. Thus the ratio of industrial era population increment to its
long-term limit value gives a unit logistic function that can be used as an index
of economic production efficiency. Labor supply is of course also connected to
population, with a simple proportionality assumed here.

In this work the same type of formulation is used for the more developed
and developing region. This formulation allows the data rather than an a priori
assumption to determine the ratio of the long-term-limit values of per capita
GDP and per capita energy use. In the context of this approach, per capita
GDP and per capita energy use are conditionally convergent, in that they can
be modeled with the same type of formulas. However, since the time-series-
calibrated long-term limit values of per capita GDP and per capita energy are
much smaller for the developing region than for the more developed region, there
is not even close to absolute convergence of these economic indicators for the
two regions.

To analyze economic production, for each region overall economic produc-
tion efficiency is taken to be log-linear in a development index and in labor,
capital, and primary energy input. Primary energy production is also taken to
be log-linear in this index and in labor and capital applied to energy production.
Primary energy production efficiency for each region also includes a factor that
depends linearly on the cumulative use of fossil carbon in that region. This addi-
tional energy production efficiency factor reflects the dependence on cumulative
fossil carbon use of both the depletion of more readily extractable fossil fuels
and the effect of accumulating local and regional experience with diseconomies
of fossil fuel use. These choices approach the minimally complex dynamic op-
timization model that can deal with the impacts of population growth and
saturation as well as the inevitable eventual transition from fossil-dominant to
non-fossil primary energy production.

The principal motivation here for minimizing complexity is to construct a
model that can tractably be subjected to a complete data-constrained calibra-
tion of outcome probabilities. To this end it has proven very convenient to be
able to construct analytic solutions based on expansions in three small param-
eters. These are referred to here as the capital fraction of energy production,
the (dimensionless) fossil carbon depletion rate, and the (dimensionless) “capi-
talization lag.” Primary energy production consumes at most a few percent of
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global GDP, so the capital fraction of energy is an excellent expansion param-
eter. (Based on prices and use data from the U.S. Energy Information Agency,
primary energy production as operationally defined below for the purposes of
this study, can be estimated as having been less than three percent of global
GDP in 2002). It also turns out to be sufficient to retain only the lowest order
terms in an expansion in the fossil depletion rate, as described below.

The capitalization lag is the fractional amount by which capital accumulation
differs from the value it would have if labor supply and production efficiency
were frozen and the economy allowed to relax to equilibrium. The computations
reported here are carried out through first order in the capitalization lag. Second
order corrections are calculated only to examine the size of the omitted terms.

Systematically calibrating and sampling probability distributions for extrap-
olating a non-linear model of carbon emissions rates requires spanning the mul-
tidimensional parameter space of a priori uncertain model inputs through selec-
tion of a large number of random samples. This is the primary reason that we
have chosen a set of equations and an expansion method that produces analytic
solutions, rather than going through the extra step of fitting analytic functions
to the input-output relations of more computationally expensive models (as in
Webster et al., 2002). Within this constraint, we have based the model on some
of the same principles used elsewhere, particularly in the approach that underlies
continuing studies using the MERGE models (Manne, 2006), but with finer time
resolution. Compared to current versions of MERGE, missing from the present
approach are breakdown of both carbon burning and non-fossil energy use into
electrical and other primary energy sectors. Also neglected here are shipments
of fossil fuels between regions and payments therefor. Such interactions between
regions are neglected largely for computational convenience, but also because
the level of aggregation is so large that, for example, carbon consumption in
the temperate region is largely in the form of coal, natural gas, and also still
substantial amounts of oil extracted within that region. The current approach
also lacks the very detailed energy sector analysis integrated with the overall
economy in models such as NEMS, MARKAL-MACRO, NEMO, and AMIGA
(c.f. Worrell et al., 2004). The systematic time-series calibration and sampling
of probability distributions including such important refinements could be ap-
proached by sampling a tractable subset of the parameters that have the most
influence on the results from more computationally complex models. Alterna-
tively or additionally, the present approach is formulated so that it can readily
be generalized and solved computationally to the same end. Either approach is
a challenging exercise that lies beyond the scope of the present work, which itself
is sufficiently involved that a compact albeit reasonably complete description is
all that can be managed here.

Another important limitation of the results presented here for carbon emis-
sions is that they are based simply on extrapolations of historical trends, with
the one important exception of how possibilities for future carbon intensities of
energy production are sampled to project beyond the time period covered by
mere extrapolation of historical calibrated results. Other than this, there is no
allowance for technological or policy changes that precipitate a substantial de-
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parture from historical trends. (Examples could include genetically engineered
biomass production that dramatically reduces the use of fossil fuels, or a global
consensus that reduces proliferation and safety concerns and leads to substan-
tial reduction in impediments to siting nuclear power plants and costs of related
waste management facilities.) Moreover, there is a simple logistic-to-a-power
evolution of overall production efficiency (the amount of GDP for a given input
of labor, capital, and energy applied to everything but primary energy produc-
tion). The inputs into GDP are extrapolated smoothly into the future, account-
ing for multiple-period periodic variations but not for singular events such as
the world wars and global pandemics that occurred before the data range used
for time-series calibration of the probability distribution functions for sampled
parameters. The type of sampling procedure used here for extrapolation of the
carbon intensity of energy production could be extended to sample uncertainties
in future carbon emissions due to an inferred probability distribution of such
disruptions. This would require numerical integration of underlying equations,
which is a manageable but more computationally intensive approach (Zhang,
2000). To the extent that sampling of potentially important uncertainties has
been omitted here, a more general approach to such matters would be expected
to produce a broader range of results than shown here in this simpler illustrative
example of the methodology.

For extrapolations into the future based on fits to historical time series there
is a question of how long the functional forms used to fit past behavior will re-
main appropriate. In the present study, this question arises most obviously for
the dependence of the carbon intensities of energy production on cumulative
fossil carbon use. We operationally define primary energy as the sum of the
thermal energy equivalent from use of coal, oil, natural gas, and electricity pro-
duction from nuclear, hydro, tidal, geothermal, wind, and solar thermal sources.
This includes only energy sources that are generally sold to consumers rather
than being used locally, both because these are most readily measureable and
because they have historically either produced carbon emissions or competed
directly with fossil fuels (in the case of non-fossil centrally generated electric-
ity). Thus, care should be taken in comparing the results presented here with
other projections of future energy use that have a broader operational defini-
tion of what is included in energy use. In the present approach, advances in
photovoltaics and non-electricity-production use of solar and geothermal en-
ergy are operationally treated as equivalent to conservation since these energy
sources are often used locally. The primary energy input to biofuels produc-
tion is included in the primary energy sector. However, biofuels themselves are
a secondary form of energy included in the rest of the economy, and any net
solar energy input to them is treated as equivalent to an increase in the pri-
mary energy efficiency of production that is calibrated against time-series data.
Pre-industrial energy sources other than coal are taken here to be adequate to
sustain pre-industrial base level economic production and populations. These
various conventions focus attention on the role of energy sources historically
relied upon for industrial-era increments in GDP.
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Using a standard carbon/energy content ratio for each of the fossil energy
sources described above, time-series data on the use of all of the included
primary energy sources is converted into time-series data on carbon intensity
(Rethinaraj, 2005). Historically, the dependence of carbon intensity on cumu-
lative fossil carbon use in each region can be well fit with a piecewise linear
function. The linear segments are separated approximately by the first drilling
for oil, the culmination of the global spread of colonialism and World War I,
World War II, and the emergence of the Organization of Petroleum Exporting
Countries cartel (OPEC). Before the first use of oil, in this approximation the
carbon intensity is the reference value for coal of 0.0255 billion (metric) tonnes
per 1018 Joule (GT/EJ). After the historical “age of coal,” the carbon intensity
decreased to an average of 0.74–0.75 times that of coal, which is very close to
the corresponding reference ratio 0.745 for oil. At this point there were breaks
in the slope of carbon intensity plotted vs. cumulative carbon use.

The historical age of coal was succeeded by an era in which fluild fossil
fuels (oil and natural gas) are the dominant primary energy source. However,
the decline in carbon intensity might be expected to level off when the carbon
intensity is about 0.54 times the level for coal, which is the carbon intensity of
natural gas. This level can likely be reached by substituting in the somewhat
larger resources for natural gas than oil at comparable production costs per unit
energy content, and balancing remaining coal and oil with a modest complement
of non-fossil primary energy sources. However, the resulting rapid depletion of
conventional natural gas resources would tend to produce a back-substitution of
coal for natural gas (c.f. EIA, 2005), even as the use of non-fossil energy sources
may continue to increase. Here we do not make a unique assumption about
what carbon intensity of energy production will have to be reached before the
historical rate of its decrease with cumulative carbon use is changed, or about
what will happen thereafter. Rather, as illuminated graphically below in Figure
8, we sample a probability distribution for the point at which the slope of a plot
of carbon intensity of energy production versus cumulative carbon use changes.
We also sample a probability distribution for the change in this slope thereafter.
This reduced absolute value of the slope is hypothesized to continue until there
is an effective international understanding that imposes substantial carbon taxes
or other methods of limiting coal consumption in order to move out of this “new
age of coal.”

The hypothesis investigated here is that an understanding on accelerating
the decline of carbon intensity of energy production with cumulative carbon
will start to be more effectively implemented when cumulative emissions have
exceeded an as yet imprecisely known level. For the purposes of illustration,
this level is sampled from a probability distribution centered on an estimate
by Petschel-Held et al. (1999) of cumulative carbon emissions that produce a
global average temperature industrial age increment of 2◦C. This choice is mo-
tivated by the inference that exceeding this level of global average temperature
increase is expected to produce noticeable and deleterious effects not only in
the tropical region but also increasingly in the temperate one as well (c.f. Keller
et al., 2005, and Kypreos, 2006). This approach provides a computationally
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convenient method of allowing each sampled result to react to its own evolution
of cumulative carbon emissions. Other than this, there is no feedback of climate
change resulting from carbon emissions included in the present analysis.

We implicitly assume that the effect on GDP of climate change resulting
from the calculated carbon emissions at various times is smaller than or com-
parable to the order of magnitude of the capital fraction of energy production.
Then the economic impact of climate change can also be neglected to lowest
order, in an expansion in the capital fraction of energy, when estimating the
evolution of capital and labor applied to other than primary energy produc-
tion. For the historical period used for time-series calibration, this seems clear
enough. This leaves the question whether and when the primary energy produc-
tion sector will be more directly influenced by the effects of carbon emissions,
rather than indirectly through their overall effect on GDP and thus the portion
thereof available for capital investment in the energy sector. In the present ap-
proach direct “order one” effects of carbon emissions on energy production are
expressed through the formula used for carbon intensity of energy production.
To the extent that concerns about global effects of carbon emissions already
influenced energy production decisions during the historical calibration period,
this influence is reflected in the data-calibrated slope of the decline of carbon
intensity of energy production with cumulative fossil carbon use as shown in
Figure 4 below. To the extent that this influence may change in the future in
ways not captured by extrapolation of this calibration against historical data,
in the present approach this change is reflected by sampling probability dis-
tributions based on the hypotheses about this slope just discussed above and
illustrated below in Figure 8.

The approach used here to possible future departures from systematically
calibrated and sampled extrapolations of the historical decline in the carbon
intensity of energy production with cumulative fossil carbon use has advantages
and disadvantages. Advantages are that is simple to sample the probability
distributions used. It is also straightforward to relate them to two reasonably
likely future developments. One of these is that it may become increasingly
expensive on the production side to reduce carbon intensity of primary energy
below the level reached when the rate of use of natural gas overtakes that of oil
and coal, with a balance between the latter and non-fossil energy sources that
leads to an overall carbon intensity of energy production comparable to that for
natural gas. The other reasonably likely development is that the incentive to
more rapidly decrease the carbon intensity of energy production will increase as
cumulative carbon emissions lead to a situation where the deleterious effects of
increased atmospheric carbon concentration are more visibly apparent in tem-
perate as well as tropical region countries. A disadvantage is that this approach
is not the result of the application of a data-calibrated theory of how develop-
ments in technology and decision making by private and public bodies interact
to influence decisions between different energy sources—important topics but
beyond the scope of the present analysis.

It should be emphasized that the approach used here to extrapolating the
carbon intensity of energy production does not assume a complete absence of
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effective near-term action on reducing carbon emissions both among selected
countries and at the sub-national level. Indeed, concern about the global en-
vironmental effects of carbon emissions may well be part of what continues to
drive down the carbon intensity of primary energy production along the his-
torical trend line for some time into the future. Rather, we simply allow for
a likelihood that there will be a temporary reduction in the rate of decline of
carbon intensity of energy production with cumulative carbon use somewhere
around the point where it can not so easily be reduced by substituting in less
carbon intensive fossil fuels and making marginal increases in the proportion of
capital-intensive non-fossil energy sources.

The models of atmospheric response to carbon emissions used here are simple
first order differential equations that can be converted to integrals over driving
terms. The driving terms for atmospheric carbon loading are the fossil carbon
emissions rate and cumulative fossil carbon burning. The driving term for the
atmospheric heat balance equation is a suitable function of atmospheric carbon
loading. For simplicity, no additional heat balance driving terms are included, so
the present results should be viewed as merely illustrative of the uncertainties
obtained when only the recently and future dominant driving term of fossil
carbon use is accounted for. Integrations over historical time series for the
driving terms allow the development of model parameters’ posterior probability
distributions. These distributions are randomly sampled to provide a set of
future atmospheric response extrapolations.

A plethora of potentially significant contributions to overall atmospheric
heat balance that are not treated in the simple model used here include changes
in other well-mixed greenhouse gases, stratospheric H2O, ozone, snow albedo,
cloud cover, solar irradiance, and aerosols. If the net contribution of these is
modest compared to that from changes in atmospheric CO2 (as in Hansen et al.,
2006), and fossil fuel burning dominates these changes, then the maximum like-
lihood extrapolation of the very simple model for global average temperatures
used here may be a reasonable indication of response to the extrapolated carbon
emissions. However, sampling probability distributions for each of these other
effects should noticeably increase the spread of the extrapolated global average
temperatures (e.g. as in Andronova and Schlesinger, 2001, or Murphy et al.,
2004). Without the need for sampling a large number of input parameters and
doing many runs of more computationally demanding models, the probability
distributions developed for the much simpler model used in this paper serve the
basic purpose here. This purpose is to simply illustrate that uncertainties in
the atmospheric heat balance make the largest contribution to overall spread in
extrapolations of global average temperature within the context of the approach
to extrapolation of carbon emissions used here.

Probability distributions for all but two parameters used to model historical
time series are determined by data sets without the need for informative prior
probability distributions. One of these exceptions is the ratio, in the limit
of mature technologies, of energy production efficiency using non-fossil fuels
to that using essentially undepleted fossil fuels. Based on the spread of busbar
electricity prices at various delivered fuel prices and the trade-off between capital
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and fuel costs in internal combustion engine fuel efficiency, a log-normal prior
probability distribution centered on a value of 2 is used for this parameter.
A log-normal prior probability distribution is also used for the coefficient of the
rate of relaxation of global average temperature toward its pre-industrial base
value. While both of these prior probability distributions can be estimated on
the basis of physical systems analysis independently of time-series data, there
is incomplete precision concerning the appropriate standard deviations for their
prior probability distributions. A plausible range of these prior uncertainties
is thus covered by reporting results based on three different values for their
standard deviations.

From this introductory discussion, it should be abundantly clear that the
objectives of the present paper are limited ones. These are to give an explicit de-
scription of a methodology for sampling calibrating probability distributions for
model parameters systematically calibrated against historical time-series data,
and to demonstrate the minimum range of outcomes from extrapolating models
of this type. To quote from a complementary study, concerning the spread in
the outcomes “we do not recommend that our quantitative results be taken lit-
erally, but we suggest that our probabilistic framework and methods be taken
seriously” (Mastrandrea and Schneider, 2004).

Based on the above considerations, the rest of this paper proceeds as follows.
The next section presents the equations used, maximum likelihood estimates
of their adjustable parameters, and comparisons of the results with historical
time-series data. The succeeding two sections outline methods and results for
sampling probability distributions for these parameters. An interesting result
is the approximately quadratic growth over a long time span of the uncertainty
of temperature increase with the size of the temperature increase. The contri-
butions of uncertainties in carbon emissions, atmospheric carbon balance, and
atmospheric heat balance are then described. The result of this investigation
is that uncertainties in the atmospheric heat balance model are predominant
within the context of the formulas and data sets used here. Throughout this
discussion it is implicit, without further repetition, that stated conclusions are
drawn only within the context of the assumptions contained in the model for-
mulation!

2. Maximum Likelihood and Sampled Fits for Carbon Use2. Maximum Likelihood and Sampled Fits for Carbon Use2. Maximum Likelihood and Sampled Fits for Carbon Use

For each geographical aggregation of data used here, we maximize the total
time-integrated discounted utility of per capita consumption. Population is
taken to be proportional to a development index a which evolves logistically
from 0 to 1. Utility is taken to be a constant power of per capita consumption,
its discount rate (the pure time rate of preference) is taken to be a constant ρ.
Solving Euler-Lagrange equations derived from any constant times an integral
to be maximized also maximizes the integral. Thus we can include a convenient
constant factor in the denominator and extremize∫ ∞

t

dt a e−ρt(C/a)1−θ
/

(1− θ)
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Here consumption C is divided by a to make it proportional to per capita
consumption, and the per capita utility is multiplied by a to make it proportional
to the total per capita utility added up over the entire population. Consumption
is final product yield less investment to make up for the sum of depreciation
rK of total capital K and the rate K̇ = dK/dt of its buildup. Throughout this
discussion, over-barred and hatted quantities are dimensional constants, tilded
quantities are dimensional and vary in time, and other quantities are generally
dimensionless. Lists of symbols and their meanings are given in Tables A.1–
A.6 in the Appendix. Some of the quantities in Tables A.2–A.4 and A.6 are
not dimensionless. For symbols restricted uniquely to representing quantities
having particular units, those units are also listed in these tables.

Units of time for dimensionless parameters are the “capitalization time”
t̄ = 1/(r̄+ ρ̄). Thus the dimensionless depreciation rate r in the above equation
is r̄t̄, the dimensionless pure rate of time preference is ρ = ρ̄t̄, and these time
units are mathematically convenient because they make r+ ρ = 1. The overdot
represents rate of change with respect to time when time is measured in units
of t̄. Dimensionless capital is measured in units of its long term limit value for
each region, and consumption and production are measured in units of the ratio
of this limit capital to t̄.

To simplify the integral extremization results, final gross domestic produc-
tion per unit time is represented as Y/α where the above-mentioned log-linear
expression is Y = [aη((1− βk)K)α((1− βl)a)ω]ϕ wβ . Here βk and βl are the
fractions of capital and labor applied to energy production w = paζ(kK)α(la)ω,
where w is measured in units of its long-term limit value w̄. Assuming α+ω =
β + ϕ = 1, total production has constant returns to labor, capital, and energy
input (in that multiplying each by the same constant mulitplies overall pro-
duction by the same constant). Energy production also has constant returns
to scale with respect to capital and labor. For a given stage of development,
energy production efficiency p = 1 + (h− 1)f is taken to decrease linearly from
an initial value h to limit value of 1 with the decrease in dimensionless carbon
intensity f from an initial value of 1 (for coal only as a primary energy source)
to approach a limiting value of 0 (with only non-fossil energy sources). From
the equation p = 1 + (h − 1)f it can be seen that, for a given value of the
development index, the parameter h is the ratio of energy sector productivity
with maximum (all coal) versus zero carbon use per unit energy production,
i.e. for short the “fossil/non-fossil productivity” ratio. As noted above, we use
a piecewise linear approximation to the dependence of f on cumulative fossil
carbon use u. The above integral is maximized subject to the constraint that
the rate of depletion of fossil carbon is equal to its rate of use for primary energy
production.

As noted for example by Sachs (2005, p. 65), there tends to be a correla-
tion between higher levels of economic productivity and lower population growth
rates. While this is a correlation rather than a precise relationship, for appropri-
ate levels of regional aggregation it leads to a convenient method for calibrating
the development index a used here. We note that for population proportional
to a logistic function a, the population growth rate is ȧ/a = ν(1 − a) = νz
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where ν = ν̄t̄ is a dimensionless constant. In terms of dimensional variables and
constants, this equation is d ln[a]/dt̃ = ν̄z where z = 1− a is the “need for de-
velopment” and a = 1/(1 + exp[−νt]) = 1/(1 + exp[−ν̄(t̃− t̄0)]). The constants
ν̄ and t̄0 are estimated using time-series data for the population growth rate
d ln[a]/dt̃.

It should be kept in mind that utility optimization in this approach occurs
only by adjusting allocations of available labor and capital to energy and other
production sectors for a given level of social and technological development.
Thus it is not assumed that resources are always optimally used, for example
by promptly removing social barriers to more efficient use of energy or capital.
Rather, resource use only becomes more closely optimal as the level of develop-
ment “bootstraps” itself to approach the maximum achievable limit according
to the equation ȧ = νa(1 − a). Thus, the present approach is qualitatively
consistent both with the observation that economies do not generally take full
advantage of potential opportunities to maximize utility, and that they never-
theless can allocate capital and labor to recover from major disruptions on about
the capitalization time independently inferred from other data in the present
analysis (c.f. Barro and Sala-i-Martin, 1995, Section 10.2).

Expansion in three types of small parameters provides a convenient basis for
the reduction of our utility maximization problem to analytic results. One of
these is β, the “capital fraction of energy.” Another is the set of the constants
εk in the fossil carbon balance equation. This equation takes the form u̇ = εkfw
when time and energy use rates are expressed respectively in units of t̄ and w̄
and cumulative fossil carbon use u is expressed in units of the asymptotic limit
amount of carbon ever used. In these units there is a different constant εk for
each of the portions of the piecewise linear function used for the carbon intensity
of energy use f as a function of u. This includes the portions k = 2 . . . 5 corre-
sponding to the historical periods in which f decreases with u (i.e. after the first
drilling for oil) and to k = 5 . . . 7 for the future, with f tending asymptotically
to zero with time for k = 7. (The line segment corresponding to k = 5 partly
covers the past and partly the future.) The third expansion parameter used is
of order ν, the dimensionless initial population and development growth rate
for each region. Details on the expansion in these parameters are given in the
Appendix and in Rethinaraj (2005). Keeping terms to lowest order in β and εk
for k > 1 and through first order in ν and expressing the results in dimensional
form, the result for the rates of fossil carbon use is

Ẽ = ĒaψfpF
α/ω
1 whereF1 = (1 + aδ)/(1 + δ) and δ = νθξwith ξ = η/ω

Here the constants Ē (in GT/yr) and the exponents ψ = 1+ζ+αξ are calibrated
against time-series data for fossil carbon use from each region. The constants ξ
are calibrated against the rate of growth per capita gross domestic product with
development, given by d ln G̃DP/d ln a = ξ+(α/ω)d lnF1/da. (Here the values of
ḠDP used are increments over 1820 base values, for the reasons outlined below in
the discussion accompanying Figure 1.) To accomplish this calibration requires
estimates of the capital fraction of production α = 1 − ω. It also requires
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estimates of the constants θ and t̄=1/(r̄+ρ̄) to obtain the capitalization lag
δ = ν̄t̄θξ in the lag function F1 = (1 + aδ)/(1 + δ).

The required numbers α = 1 − ω, θ, r̄, and ρ̄ are assumed for simplicity
to be universal constants and are estimated from various types of data in the
literature, as described in the Appendix. A probability distribution for each of
the four constants in the set {α, θ, r̄, ρ̄} has been derived, with the results shown
as the first four set sets of values in Table I. The resulting derived estimate for
t̄ = 1/(r̄ + ρ̄) is given at the bottom of Table I.

TABLE I

Global parameters

Value V ∆V/V Type Meaning

0.325 0.33 0< α < 1 capital share α
1.345 0.10 39 39 degrees of freedom for θ
0.107 0.06 28 depreciation rate r̄ in 1/yr
0.022 0.08 weighted discount rate ρ̄ in 1/yr
0.422 0.13 29 tropical productivity parameter ξ
0.978 0.13 33 temperate parameter ξ
7.76 derived capitalization time t̄, yr

An estimate for the GDP productivity exponent η is obtained from values for
ξ = η/ω shown in Table I, based from data on d ln ḠDP/d ln a. The temporal
evolution of the development index a was previously calibrated against pop-
ulation growth rates. Obtaining these estimates and probability distributions
for them requires accounting for well-known periodic variations in economic
growth rates, as described in the Appendix. Since the estimation formula is
nearly linear in ξ, the marginal probability distributions for ξ averaged over
the amplitudes of the periodic corrections are to an adequate approximation
student t-distributions with a known number of degrees of freedom. For the
other cases where an integer is listed in the third column in Table I, this is also
the number of degrees of freedom for a student-t distribution. In all of these
cases, the number of degrees of freedom is large enough that the distribution is
approximately normal except in its tails beyond the ninety-five percent central
confidence region.

For each case listed in Table I, the uncertainty in the indicated parameter
influences the overall result through its effect on the expansion parameter δ.
In each case, the product of δ and the fractional uncertainty listed in the col-
umn labeled “∆V/V ” is taken to be small enough to be neglected, so only the
maximum likelihood estimates of these parameters are used. The method for
estimating “∆V/V ” in each case is given in the Appendix.

The top part of Table II lists estimates of the remaining econometric pa-
rameters in the above formulas. The bottom part of Table II lists a number of
values derived from these parameter estimates. For the tropical region, the de-
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velopment timescale 1/ν̄ is about equal to the average difference in age between
mothers and children at the time of children’s birth, i.e. one human generation.
For the temperate region the development time is slightly lower. Figures 1–3
show the resulting data fits. The values listed for the dimensionless carbon de-
pletion rates ε5 = w̄t̄m̄5 are for current magnitudes of the slopes m̄5 for change
in carbon intensity vs. cumulative fossil carbon use, which are the only ones
directly impacting extrapolations (c.f. Appendix).

TABLE II

Regional parameters

Calibrated:
Tropical Temperate Meaning

2001.6 1966.8 inflection time t̄0 (Julian yr)
0.0407 0.0517 development rate ν̄ (1/yr)
0.0183 0.0204 intercept f̄5 (GT/EJ)
0.0291 0.0122 1000 × (slope −m̄5 in 1/EJ)
2.0000 2.0000 h=fossil/nonfossil productivity
1.7971 1.4442 ψ = d lnE/d ln a
5.0964 7.0775 Ē scale (GT/yr)

Derived:
Tropical Temperate Meaning

24.585 19.353 development time 1/ν̄ (yr)
0.0013 0.0005 ε5 = w̄t̄m̄5 � 1 ⇒ slow depletion
0.3155 0.4008 development rate ν = ν̄t̄
0.1791 0.5275 capitalization lag δ = νθξ
0.0610 0.0985 γ2(δ/2)2 ∼ omitted lag correction

Also listed in the bottom portion of Table II are estimates of the ratio ν of
the capitalization and development timescales and of the capitalization lag δ.
While the estimated capitalization lag is not particularly small for the tem-
perate region, the omitted next order term in the above capitalization factor
is proportional to azδ2, where the product az takes on the maximum value of
(1/2)2 at the unit logistic function inflection point where z = 1 − a = 1/2.
The constants γ2, whose values can be computed from the entries for δ in this
table, are coefficients in this expansion (c.f. Rethinaraj, 2005). This second
order term can readily be included, but this noticeably increases computation
times, and adding higher order corrections is at best of marginal use because
the expansion in δ is only asymptotically convergent. More accurate solutions
can be obtained by numerical integration (Zhang, 2000). However, the esti-
mated accuracy of about ten percent obtained for the global model parameters
is adequate for demonstrating the overall features of the growth of extrapolation
uncertainties over time, particularly since as shown below the choice of param-

14



eters characterizing the development function has only a small impact on the
overall uncertainty in global average temperatures.

As discussed in detail below, Figures 1, 4, and 5 respectively compare the
calibrated theory to data for the evolution of population growth rate, carbon
intensity, and fossil carbon use rates. For population growth and carbon con-
sumption, using only the formulas above with annual data leaves clearly statisti-
cally significant temporal correlations amongst the residual differences between
the data and fits. These must be accounted for before appropriate probability
distributions for the theory parameters can be derived from the data. This is
done as follows. First, a discrete frequency power spectrum is obtained for the
residuals between the theory and the data obtained using the formulas given
above. Then the amplitudes of the sine and cosine components of the periodic
correction for the largest amplitude periodic mode are estimated. The residuals
from the resulting fit are again used to compute a frequency power spectrum
and the procedure is repeated until no significant periodicities remain. The
statistical test used for this is described in the Appendix. It avoids a situation
where it is known to be more likely than not that their remains a statistically
significant periodicity in the residuals.

Various additional steps taken here for computational convenience also help
avoid a situation where there are known to be statistically significant non-
periodic nearest neighbor correlations between temporally adjacent residuals
difference of theoretical fits and data: In the case of population and per capita
GDP, logarithmic differences are taken to eliminate the need for determining
an additional dimensional scale parameter in the fits. This has the additional
effect of reducing otherwise expected nearest neighbor correlations. Fitting to
logarithms of data was also favored on the grounds that it should reduce a (het-
eroskadistic) trend for the residuals between data and model results to become
larger when the absolute values of the data increase considerably with time. In
the case of carbon intensity, data points are averaged in groups of at least two as
described in the Appendix, in order to achieve a uniform spacing in cumulative
carbon use as the independent variable. This not only allows for simple applica-
tion of the discrete Fourier series power spectrum test referred to in the previous
paragraph, but also tends to reduce nearest neighbor correlations in residuals
between fits and data so averaged. In the case of the more computationally de-
manding models of the evolution of fossil carbon emissions and the atmospheric
heat balances described below, the total number of data points available for use
is divided by two through biennial averaging (or by three by triennial averaging
for the atmospheric carbon balance). Not only does this usefully reduce the
computational burden, it also reduces the tendency of the residuals to exhibit
nearest neighbor correlation.

The solid curves in Figure 1 show the periodicity-corrected fits to growth
rates of the population increment over its 1820 base value for the tropical and
temperate regions. This increment is the population referred to above in the
discussion of “development.” The year 1820 chosen for the base year for this
calculation is the first year for which annual population estimates are available
from the primary data source used (Maddison, 2001 and 2003). This year also
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marks the first decade of the “Concert of Europe” which saw the beginning of
a long period of strong population growth. Before the Napoleonic Wars that
preceded the Concert of Europe and the ultimate global reach of colonialism,
population levels and economic production evolved at a much more modest pace.
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Figure 1. Growth rate d ln[P̃−P̄base]/dt̃ = ν̄z+
∑m
n=1 Ān sin

[
2π

(
t̃− τ̄

n
)/T̄n]

= (ȧ/a)/t̄ of population less preindustrial values, with a = 1/(1+exp[−ν̄(t̃−t0)])
and z = 1 − a. The tropical region’s constants are P̄base = 0.37 billion,
ν = 0.0517 yr−1, t̄0 = 1996.8yr, m=2, 100{Ān} = {0.087, 0.031}, {τ̄n}−2000 =
{−6.90,−1.80} yr and {T̄n}={38,38/7} yr. The temperate region has P̄base =
0.68 billion, ν = 0.0407 yr−1, t̄0 − 2000 = −6.90 yr, m = 5, and the periodic
corrections parameters are 100{Ān} = 0.186, 0.139, 0.078, 0.068, 0.36, {τ̄n} =
{3.02, 5.54, 1.32,−0.37.0.35} yr, and {T̄n} = {38/2, 38, 38/4, 38/2, 38/9} yr.
Dashed curves omit the periodic corrections.

The periods and amplitudes of the periodic corrections for the development
index are given in the legend to Figure 1, and for other fits in Table III. The
dashed curves in Figure 1 show the “secular” model results for the same logistic
function parameters listed in Table I. (The term “secular” refers to a model
without periodic corrections.)

Figure 2 compares the secular logistic functions, which are fitted approxima-
tions to the ratios of the population increments to their long-term limit values.
The denominators in these ratios are the differences between the initial and
final population numbers listed on the figures. The long-term limit populations
are obtained by minimizing the mean square difference between the population
increment data and theory. In can be seen from Figure 2 that the development
of the tropical region shows a comparable temporal evolution to that of the
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more developed temperate region, trailing behind by the nearly thirty-five year
difference in time between the inflection point dates listed in Table I.
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Temperate: 0.68��3.12 billion

Figure 2. Extrapolated development indices a = (P̃ − P̄base)/(P̄∞ − P̄base),
with the constants shown with the notation P̄base –> P̄∞. Solid portions of the
curves indicate the time range of the data stream used for calibration.

In effect the approach taken here assumes the continued existence of 1820-level
subsistence populations relying on traditional energy sources not otherwise ac-
counted for here (like wood and dung) and stuck in a “poverty trap” that allows
them too little access to primary energy sources or contribution to regional GDP
to substantially affect the rest of the analysis. There is as yet little empirical
evidence that this situation is changing, and modeling the probability that suf-
ficient effective international development assistance will be mobilized to sub-
stantially change this state of affairs is beyond the scope of the present analysis.
For the present purpose, the approach taken here is convenient because it allows
for connection to an early period of exponential “balanced growth” of primary
energy and GDP increment over the pre-industrial base, without requiring that
the total GDP extrapolate back essentially to zero in the base year 1820 on the
development timescales listed in Table I.
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Figure 3. Scatter plots of 100 random samples of initial development rate,
with the indicated maximum likelihood estimates t̂0 subtracted from inflection
time samples t̄0 so that both regions can be plotted on the same graph.

Scatter plots for a hundred random samples each of the development index pa-
rameters {ν̄, t̄0} are given for the tropical and temperate regions in Figure 3.
To allow these to be plotted on the same graph, the maximum likelihood esti-
mates t̂0 indicated on this figure for each region have been subtracted from the
inflection time t̄0 samples before plotting. The method used for obtaining these
plots was rejection sampling. Details on this sampling method are described in
the Appendix.

The data range used to compute the results shown in Figures 1 and 2 covered
the years 1962–2000 inclusive. Since the population data are differenced to
obtain growth rates, temporal averaging is inconvenient, and is also unnecessary
and avoided in this case. The starting date of 1962 is chosen primarily to
avoid the period of rapid re-capitalization that occurred during the first two
capitalization times after World War II when fitting per capita GDP over the
same time range. As shown by Barro and Sala-i-Martin (1995, Section 10.2),
after WWII the major combatants underwent an economic readjustment on
about this capitalization timescale that returned them to near their historical
rates of growth of per-capita GDP. The choice of 1962 for a starting date also just
avoids the period of the Chinese “Great Leap,” which produced a population
deficit of about thirty million people compared to the pre-existing trend. To
include the center of the Great Leap period in the population database would
introduce a clear outlier and require a modification of the mathematical methods
used. For these reasons we postpone the econometric modeling of such turbulent
times to future studies. No other clear outliers in the differences between data
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and maximum likelihood fits were observed during inspection of all residuals
from fits done for this paper.

It is both convenient and sufficient to use in the succeeding calculations
only the secular approximations for the development index, sampled from the
bivariate marginal probability distribution obtained by integrating over other
parameters in the probability distributions as described in the Appendix. This
is convenient because it enormously simplifies the solution for utility maximiza-
tion for the succeeding portions of the model. It is sufficient because empirical
periodic corrections to the desired fossil carbon use rates are in any case in-
cluded in the fits of the theory for the succeeding portions of the model. The
underlying theoretical assumption is that the economies respond to the average
background trends in growth of population and development, with periodicities
in actual carbon use reflecting business and energy pricing cycles superimposed
on the resulting background trends.
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Figure 4. Piecewise linear maximum likelihood fits (solid lines) and sets
of twenty random samples (dashed lines) for the line segments’ slopes and in-
tercepts, for carbon intensity of energy production as a function of cumulative
carbon use. The portion of the fits labeled “-m̄5” have slope −m̄5 and are ex-
trapolated as a linear function of cumulative carbon use until a change of slope
is chosen as exemplified in Figure 8.

Fits to data on the carbon intensity of energy use are shown in Figure 4. The
piecewise linear and bold dashed lines in Figure 4 include the line defined by
the intercept and slope listed in Table II. Also shown in Figure 4 are results
from twenty random samples for the slope −m̄5 and intercept f̄5 for these seg-
ments, and for the preceding line segment. Since the fitting functions are linear
in all of the fitting parameters, under the assumption that the residual differ-
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ences between the data and the fits are independently and identically normally
distributed (normal iid), the marginal probability distributions for the pairs of
slopes and intercepts for these lines have a bivariate student t-distribution (Box
and Tiao, 1972, p. 45).
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Figure 5. Carbon use rate fits vs. biennially averaged data for maximum
likelihood estimates (solid curves) and sets of twenty random samples (dashed
curves). The solid curves multiply results using the secular parameters in Ta-
ble II by corrections of the form exp[

∑3
n=1 Ān sin[2π(t̃ − τ̄n)/T̄n] where the

periods T̄n , phases τ̄n, and amplitudes Ān for solid curves are listed, from the
rightmost column for n = 1 to the leftmost column for n = 3, in the upper
part of Table III. The parameters sampled using the methods described in the
Appendix are the scale Ē, development index exponent ψ, the amplitudes of the
sine and cosine contributions to the periodic corrections, and the frequency of
the periodic correction that has the longest period. Fits are done to logarithms
of carbon use rates, so to a good approximation it is the sum of squares of
the fractional rather than absolute differences between data and the maximum
likelihood fitting function that is minimized to produce the solid curves.

Results for calibration, sampling, and near-term extrapolation of fossil carbon
use rates for the tropical and temperate regions are shown in Figure 5. The dark
solid curves are maximum likelihood fits, and the lighter dashed curves result
from taking twenty random samples of the fitting parameters. To produce these
results, it is necessary to solve the fossil carbon balance equation, which in
dimensional variables can be written in the form

ν̄zadũ/da = w̄f̃k(1 + bhf̃k/f̄1)aψFα/ω
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with f̃k = f̄k − m̄kũ and b = (h − 1)/h. Here ν̄ is the initial population and
development growth rate for each region in 1/yr, ũ is its cumulative carbon use
in Gtonne, w̄ = Ē/f̄1 is its long-term limit energy use rate in EJ/yr, and f̃k
for k = 4, 5 are the carbon intensities of energy use respectively for the earlier
and later downward sloping line segments shown in Figure 4. The normaliza-
tion constant f̄1=0.0255 GT/EJ is the nominal intensity for earliest times when
only coal was used as a primary energy source as operationally defined here.
The left hand side of the above fossil carbon balance equation results from the
property of the unit logistic function a that d/dt̃ = ν̄zad/da with z = 1 − a.
The right hand side accounts for the assumption that the energy production
efficiency for a given level of development decreases in the limit of maximum
cumulative carbon use by a factor of h. This results because b = (h− 1)/h, and
p = (1 + bhf̃k/f̄1) takes on the value h at the beginning when f̃1 = f̄1 and the
value 1 in the energy sustainability limit where f̃7 → 0.

TABLE III

Periods, phases, and amplitudes for periodic oscillations

Tropical Emissions:
Period (yr) 40.13 13.00 7.80
Phase (yr from 2000) -2.72 2.93 1.92
Amplitude (%) 2.52 0.72 1.52
Temperate Emissions:
Period (yr) 36.04 19.50 7.80
Phase (yr from 2000) 6.64 −3.41 1.70
Amplitude (%) 6.65 3.68 1.77
Global Temperature:
Period (yr) 64.23 20.64
Phase (yr from 2000) 5.90 −2.13
Amplitude (◦C) 0.101 0.044

The fossil carbon balance equation can be analytically integrated to give

ln[
(bhf̄k/f̄1) + 1

/
(1− ũm̄k/f̄k)

(bhf̄k/f̄1) + 1
/
(1− ū4m̄k/f̄k)

] = εk(S[a]− S[a4])

where S[a] =
∫ a
0
da aψ (1 + aδ)α/ω /(za). Here the last historically determined

development index break point a4 for each region and the cumulative carbon use
ū4 at this break point are known from the carbon intensity fitting procedure.
This analytically integrated fossil carbon balance equation is readily solved for
ũ. The result is inserted into the above expressions for carbon intensity f̃k and
the production efficiency factor p. This allows evaluation of the carbon use rates
E(f̃k/f̄1)(1 + bhf̃k/f̄1)aψFα/ω. The Appendix shows how the integral S[a] can
be expressed in terms of a hypergeometric function.
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Given the known existence of short-term business cycles and longer periods
of energy cartel efficacy and inefficacy, it is to be expected that periodic cor-
rections will be needed to the underlying trends in fossil carbon use obtained
from the above formulas. The method for estimating these corrections follows
that described above for population and GDP growth rates, with one exception.
This exception is that the frequency of the longest period is taken as a fitting
parameter. In the cases described above it was sufficient to fix this frequency
to correspond to the longest period that was statistically significant in the dis-
crete Fourier power spectrum of the residuals between the secular model and
the data. This was all that was needed to make the final residuals apparently
iid, and since only the parameters describing the secular parts of the model
were subsequently needed it was not necessary to obtain an accurate sampling
of the periodic behavior. In the case of the rate of fossil carbon use, however,
it is both tractable to numerically integrate the effect of periodic variations
on the atmospheric carbon and heat balances and interesting to track the non-
secular variations of carbon use at least into the near future. However, fixing the
frequency of the fairly large amplitude longest period oscillations would overes-
timate the accuracy with which the phasing of these oscillations can be traced
into the more distant future. To avoid this difficulty, it is necessary to sample
the frequency of the longest period oscillations, as described in the Appendix.

In the fits and extrapolations shown in Figure 5, the leveling off of the
fossil carbon use rate around 1980 and in the 1990s correspond respectively to
the first oil cartel period and to reform of centrally planned economies in the
temperate region (which includes China as well as the former Soviet block). If
the roughly linear growth in carbon use rate observed on the average for the
temperate region from 1974–96, resumes, then the increasing pressure on the oil
portion of this carbon use would be expected to stimulate energy substitution
and conservation measures. This would lead to downward pressure on carbon
use unless oil is replaced primarily by coal, which is possible but difficult given
the current predominant use of oil as a source of transportation fuel. Just
how large such a correction would be is highly uncertain. According to the
present broad-brush empirical treatment of such oscillations, for the twenty
random samples shown the result by 2015 for the temperate region could range
anywhere from little reduction below peak levels of carbon use rate to a return
nearly back down to late twentieth century levels. Carbon use by the tropical
region (which notably includes India), on the other hand extrapolates to be
appreciably greater in 2015 than in 2000 in all twenty tropical region samples.
The exact timing and extent of a post-2015 temperate region carbon use rate
downturn may depend on the details of the fallout from the 2003 invasion of
Iraq. That event followed the renaissance of effective oil cartel pricing at the end
of the twentieth century slightly more rapidly than the Iran-Iraq War followed
the onset of first effective oil cartel pricing in 1973. The details of how all of
this occurs lie well beyond the scope of the present model. The main point here
is that, from a statistical analysis point of view, accounting for the existence
of non-secular variations can be significant when fitting and sampling models
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based on data that include the kind of variations that occurred in the latter
part of the twentieth century.

The scale Ē of the long-time-limit carbon use rates listed in Table II of about
five Gtonne per year for the tropical region is less than that of seven Gtonne
per year for the temperate region, despite the more than two-fold larger long-
term limit population in the tropical region. This might at first glance seem
surprising, since a wide range of carbon emissions scenarios from the Intergov-
ernmental Panel on Climate Change have higher carbon emissions evolving in
developing than developed regions (e.g. in Nakicenovic, 2000). However, on
closer examination the reasons for this become apparent:

First, because of its low population growth rate over the data calibration
period used, China is included in the temperate region here. China is instead
lumped with developing countries in many other studies.

Second, it is common in scenario building to extrapolate a growth rate for
developing countries’ GDP that is higher than for developed countries. This has
the inevitable result that the total GDP for the developing countries eventually
becomes higher than for the developed ones if the extrapolation is taken out far
enough. The use in the present work of a logistic function raised to a power for
the extrapolation of economic productively allows the data calibration to deter-
mine whether extrapolated GDP for a region with current higher growth rate
eventually overtakes a more developed region that currently has lower growth
rate. If the less developed region is still deep in its exponential growth phase
then it will overtake the more developed one. However, in the present case
the tropical region has the maximum likelihood value for the inflection point
time for its productivity coefficient aψ in the year 2016 and passes out of its
exponential growth phase during the 1960–2020 time range plotted above in
Figure 5. Of course if there is a break in the historical pattern, for example
through a significant shift to effective foreign aid to break the poverty cycle in
Africa (c.f. Sachs, 2005), then the range of extrapolations based on the present
model could be exceeded. It would be interesting to estimate the probability
of such an enterprise on effective poverty alleviation being attempted and suc-
ceeding, but incorporating such estimates is beyond the scope of the present
paper.

A third reason for moderation of carbon use rates in the tropical region is
that the linear growth phase around its inflection point is occurring at a time
when the decrease in carbon intensity of energy production, f , and its effect
through p = 1 + (h− 1)f on energy productivity is more pronounced than was
the case in 1974 when the temporal region passed through the inflection point
of its productivity coefficient aψ. In part for the reasons just listed, it will not
be surprising to see below that the overall fossil carbon emissions rates shown
below in Figure 9 are comparable to the lower emissions rate scenarios reported
in scenario B1 from the IPCC Third Assessment Report than for several other
scenarios in that report (IPCC, 2001) .
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3. Atmospheric Response3. Atmospheric Response3. Atmospheric Response

The equations used to model the fractional increase c and increase T̃ respectively
of atmospheric carbon loading and global average temperature over their pre-
industrial base values are (Petchsel-Held et al., 1999):

C̃0dc/dt̃ = B̄F̃net + β̄Ẽnet − σ̄C̄0 c

dT̃ /dt̃ = µ̄ ln[1 + c]− ᾱT̃

Here c = (C̃−C̄0)/C̄0 where C̄ is the atmospheric carbon dioxide concentration.
The pre-industrial atmospheric carbon dioxide concentration from the data we
use is 277.0 ± 0.1 ≈ 277 parts per million (ppm by mass) for 1700–1755, so
the preindustrial atmospheric CO2 concentration is taken to be given at C̄0 =
277 ppm (Rethinaraj, 2005). Ẽnet is ηnet times the total global fossil carbon
use rate, and F̃net is the cumulative value of Ẽnet. One could set ηnet<1 to
account for incomplete combustion, but we also omit gas flaring and bunker
fuels used in air and sea transport (which are not readily assigned to a particular
region’s consumption) and CO2 emissions from production of cement (for which
we have not assembled a comparably complete and disaggregated database).
These omissions are all small and approximately compensate each other, so for
simplicity here we set ηnet = 1. We also neglect the effect of secular changes in
land use on carbon emissions. These changes may dominate nineteenth century
net carbon emissions and still be comparable to the effects of fossil carbon use
in the early twentieth century, which is one of the motivations for using only the
Mauna Loa data from the second half of the twentieth century for calibrating
the atmospheric carbon balance model (Keelling and Whorf, 2005). Whether
there is any significant net effect of land use changes on cumulative carbon
emissions by the end of the twentieth century is not completely clear (Jain and
Yang, 2005), so for simplicity we also neglect their impact on F̃net.

For the preindustrial global average temperature, data that is comparably
stable and accurate as that for atmospheric CO2 are not available. Thus the
base level temperature is taken to be a fitting parameter. Only the increase over
this value is reported for modeling results for T̃ . For the maximum likelihood
reference model results here, the fitted value for the preindustrial base level is
0.004 (◦C) lower than the low point of the biennially averaged global average
temperatures data from 1857–2000, which is found at 1907–08. Thus for this
case the 1907–08 average, which is unusually low for the twentieth century, is
almost exactly equal to the inferred preindustrial base value.

The constant β̄ = 0.47 in the above equations converts Gtonne elemental
carbon to ppm atmospheric CO2. The long-term limit F̄net of cumulative car-
bon emission in this model effects a long-term increase in atmospheric carbon
content and global average temperature through saturation of near-surface car-
bon reservoirs. The net long-term effect on atmospheric carbon loading increase
proportional to the constant B = B̄/(β̄σ̄).

The constant µ̄ is a measure of the greenhouse effect. At the rough approx-
imation level used here, only the greenhouse effect of fossil carbon emissions is
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taken to be secular. All other greenhouse effects are implicitly subsumed in the
periodic corrections that are required to make the residuals between the data
and global average temperature data apparently iid according to the statistical
tests used.

The very simple model used here for drivers of global average temperature
is fortuitously approximately adequate for the historical data period examined,
for two reasons. One of these is that the (primarily secular) effect of other
anthropogenic radiative forcings approximately cancels out. These include the
warming effect of CH4, N2O, well-mixed trace gases, and ozone and the cool-
ing effect of anthropogenic aerosols. A more complete assessment of outcome
probabilities would include detailed models of the past and future of each of
these effects, rather than approximate their slight net historical warming effect
as exact cancellation and implicitly assume that such cancellation will continue
in the future.

Another simplification follows from the observation that the effects of changes
in solar irradiance and stratospheric aerosols in sum are both primarily non-
anthropogenic and non-secular. Shorter period changes in solar irradiance con-
nected with sunspot cycles are known to be intrinsically periodic, and any sig-
nificant longer term changes on century time scales may be as well. The strato-
spheric aerosol effect is driven primarily by volcanos and is perchance approxi-
mately periodic over the time of availability of direct atmospheric temperature
measurements. This is due to comparable periods of enhanced volcanic activity
starting with Krakatoa in 1883 and Agung in 1963. A more complete treatment
of such non-secular influences on global average temperature would explicitly
account for changes in solar irradiance and rely on observations of individual
past volcanic eruptions and a stochastic model of future production of strato-
spheric aerosols. For an extensive recent discussion of these issues pertinent to
the simplifications used here, see Hansen et al. (2006).
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TABLE IV

Atmospheric carbon balance and heat balance parameters

Carbon:
Value Meaning

0.0449 CO2 relaxation coefficient σ̄ (1/yr)
0.2296 saturation coefficient B = B̄/(β̄σ̄)
0.1411 c, 1960 fit (⇒ C̃ = 316 ppm in 1960)

Heat:
Value Meaning

0.0171 thermal relaxation coefficient ᾱ
0.0170 ᾱ prior mode in yr−1

0.0979 opacity effect coefficient µ̄ (◦C)/yr
−0.0040 lowest data is preindustrial plus T̃0 = −0.0040◦C

The atmospheric carbon loading and global average temperature changes
in the approximation used here respectively respond immediately to carbon
emissions and increases in atmospheric carbon content. Thus, for example,
the greenhouse effect coefficient µ̄ is heavily constrained by the data. However
physical climate models suggest that the temperature relaxation coefficient ᾱ
is so small that it is not well conditioned by the data used for calibration in
the present study. It was thus found desirable to apply a prior probability dis-
tributions for ᾱ. Since on physical grounds ᾱ >0, we use a log-normal prior
probability distribution for it. The extraction of such distributions from physi-
cal principles without “double counting” the data subsequently used for model
calibration involves subtleties that are avoided here simply by adopting log-
normal prior probability distributions with modes determined by a literature
reference value. The prior mode for ᾱ from Petschel-Held et al. (1999) is listed
in Table IV. Also listed in Table IV are the maximum likelihood values for all
of the atmospheric response parameters, given the data used, for a standard
deviation in the log-normal prior for ᾱ of 0.3. Sampling results for these prior
standard deviations set to 0.2 and 0.4 were also obtained, as described below.
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TABLE V

Influence of prior on carbon balance parameter estimates

prior σB 0.20 0.30 0.40 ∞

B = B/(β̄σ̄) 0.2166 0.2192 0.2209 0.2296
σ̄ 0.0435 0.0438 0.0440 0.0449
c = (C̄ − C̄0)/C̄0 in 1960 0.1407 0.1408 0.1408 0.1411

The value of the dimensionless constantB = B̄/(β̄σ̄) is important for the present
study, since in the long-term sustainable (Ẽnet→0) limit, the post-industrial in-
crease in atmospheric carbon dioxide concentration levels off at a value propor-
tional to cumulative carbon emissions as C̄0c→ Bβ̄F̄net. The value of B̂ ≈ 0.23
for B listed in Table IV is twice the mean of the range 0.08–0.15 from “disso-
lution chemistry of carbon in the oceans” quoted by Petschel-Held et al. (1999)
from Maier-Reimer and Hasselmann (1987). As shown in Table V, the data
used here demands this result even if a very informative prior probability dis-
tribution for B is included when computing a maximum likelihood estimate.
In particular, very nearly the same estimate for B is obtained after imposing
a log-normal prior probability distribution for B with a standard deviation as
small σB = 0.2. The value σB = 0.2, corresponds to a ninety-five percent prior
confidence range of only 0.08–0.16. Given these results, for the fits and extrap-
olations shown here we decided to therefore sample the posterior probability
distribution without using any informative prior for B.
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Fits to the fractional increase c in atmospheric carbon dioxide concentration
over the preindustrial base are shown for twenty random samples in Figure 6.
This figure shows the range of self-consistent data on triennially averaged at-
mospheric carbon dioxide measurements from 1959–2000 used to calibrate the
atmospheric carbon balance model. For these fits there is no need for periodic
corrections if the data are averaged in groups of three adjacent years, which con-
siderably simplifies the analysis. (With less data averaging periodic corrections
are required according to the statistical test used here, but their amplitudes are
very small.)

1970 1980 1990 t
��yr�0.1

0.2

0.3

0.4
c Fractional CO2 Change

Figure 6. Fractional change c = (C̃−C̄0)/C̄0 of atmospheric CO2 concentra-
tion plotted for triennially averaged data and twenty random samples. (C̃− C̄0)
is the increment of CO2 over its pre-industrial base value of C̄0 = 277 ppm.
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For global average temperature, the discrete Fourier power spectrum of the
residuals between data and the secular model reveals two statistically significant
periodicities. Both of these are readily apparent in the twenty random samples
shown in Figure 7. For convenience, the zero level in Figure 7 is taken to be
the 1907–1908 average temperature, so what is plotted there is ∆̃T = T̃ + T̄0,
where T̄0 = −0.004◦C. Given the size of the amplitudes of the periodic cor-
rections, the frequencies of both are varied for maximum likelihood fitting and
subsequently sampled. This is done to avoid overestimating the accuracy with
which the phase of either of these variations can be projected into the future and
thus produce spurious oscillations in the spreads of global average temperature
described below.
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Figure 7. Temperature increment over the lowest of the biennially averaged
global average temperatures for twenty random samples.

4. Projection Uncertainties4. Projection Uncertainties4. Projection Uncertainties

With the random samples of fitting parameters described above, it is possible to
construct random samples of future carbon use, the atmospheric carbon balance,
and global average temperature that are appropriate as long as the formulas
used are applicable. However, caution in pushing this too far is suggested by
the historically observed breaks in slope of piecewise linear fits to the carbon
intensity as a function of cumulative carbon use. To account for uncertainties
about expected future changes in the slope of this relationship, as outlined
qualitatively in the Introduction section above, we have allowed for and sampled
the parameters of two additional future breaks in this slope. In describing this
model quantitatively here, carbon intensities are divided by the nominal value
for coal. Thus, for example, the carbon intensity for natural gas is fgas = 0.54.
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To account for the difficulty of reducing the average carbon intensity of en-
ergy use below the value for natural gas, a log-normal distribution with a mode
for the next break point at near this carbon intensity is sampled. The result is
fbreak = Max[0, fnow − (fnow − fgas)d1], where d1 is sampled from a log-normal
distribution with standard deviation σprior. Here fnow is the carbon intensity
at the last fitting point in the reference model, which for maximum likelihood
parameters is coincidentally nearly equal at 0.67 for the temperate region and
tropical regions. At this next break point the magnitude of the slope for the
temperate region is divided by (1 + d2) where d2 is also sampled from a log-
normal distribution with standard deviation σprior. For the sample mode at
d2 = 1 this cuts the magnitude of the slope in half.
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Figure 8. Carbon intensity of energy production for sets of twenty random
samples.

The mode values chosen for the next break point, here called fact, are the
carbon intensities of energy production when total cumulative fossil carbon use
over all previous time is 1200 Gtonne with all maximum likelihood parame-
ters in the model. This occurs in this reference simulation at year 2103, when
global average temperature increment over preindustrial values with these pa-
rameters is 2.05oC. The resulting values for fact are comparable, at 0.44 for the
tropical region and 0.47 for the temperate region. The next break point is at
Max[0, fbreak − (fbreak − fact)d3] where d3 is sampled from a log-normal distri-
bution with standard deviation σprior. At this point we revert back to the most
historically observed slope of carbon intensity vs. cumulative use, times a factor
d4 sampled from a log-normal distribution with standard deviation σprior. This
centers this slope back on the larger historically achieved magnitude, but with
a large range of uncertainty assumed here to be appropriate for extrapolations
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to such a distant future. The results shown in Figures 8–13 in all cases use a
reference value of σprior = 0.3.
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Figure 9. Total global carbon burning for twenty random samples.
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Figure 10. Cumulative carbon burning for twenty random samples.

Projections for twenty random samples of annual and cumulative global carbon
burning are shown in Figures 9 and 10 respectively. The early twenty-first
century surge in carbon use rate is succeeded by a correction for about three
decades down to the 8–9 Gtonne/yr range. After this, an approach to saturation
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in total primary energy use rate combines with the decline of carbon intensity
illustrated in Figure 8 to produce a long declining trend in carbon emissions. As
would be expected from any sensible uncertainty analysis, the uncertainty for
carbon emission rates for most of the twenty-second century is comparable to
their magnitude. The same cannot be said about the uncertainty for cumulative
fossil carbon emissions. Given previous history and another half century of
annual emissions in the 8–9 Gtonne range, cumulative carbon emissions through
the twenty-first century are tightly constrained, and an appreciable fanning of
projections for cumulative carbon emissions is only evident in the twenty-second
century.

Note that the near stagnation of growth in carbon emissions and its subse-
quent decline in the second half of the twenty-first century occurs despite the
fact that what is conceptually thought of here as a “new age of coal” moderates
the recent historical slope of decline of the carbon intensity of energy production
as a function of cumulative carbon use. The saturation and gradual decline of
carbon emission rates in the twenty-first century follows primarily from modest
rates of extrapolated growth resulting from fitting the model used here to histor-
ical data. Also, the projections done here have the carbon intensities of energy
production divided by that for pure coal on the order of one-half (e.g. natural
gas dominated) for most of this century, as opposed to their recent values of
about two-thirds. This results only from extrapolating recent historical trends
down to the point where the carbon intensity of energy production is on the or-
der of one-half, not from assuming that a global agreement on limiting carbon
emissions keeps the recent historical trend continuing without interruption. It
is only the steeper rate decline of global carbon emissions rate in the following
century that results from a sampling a distribution of this slope centered on the
maximum likelihood value of its recent historical average. That such globally
effective action to accelerate the trend to asymptotic approach to zero carbon
emissions occurs at some point randomly sampled around the carbon intensity
that corresponds to enough cumulative global carbon emissions to raise global
average temperatures by just above two degrees Celsius above pre-industrial
levels is, of course, just one of many hypotheses that could be chosen for such
extrapolations. It serves here, however, to provide an example of how such a
hypothesis can readily be incorporated into the present approach.
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Figure 11. Atmospheric carbon concentration for twenty random samples.

Atmospheric carbon concentrations are heavily influenced by the fairly well
defined emissions rate in the first half of the twenty-first century. In the twenty-
second century the saturation effect represented by the parameter B̄ in the
atmospheric carbon balance equation slaves atmospheric carbon concentrations
to a fairly sharply defined level of cumulative emissions. As shown in Figure 11,
the net result is a fairly narrow spread of projections for atmospheric carbon
concentrations. All of this is the context of a very simple linear differential
equation whose three-parameter solution set is tightly constrained by the small
and apparently random variations of triennial averages of reported data. It has
been noted above that the maximum likelihood estimate B̂ ≈ 0.23 of the pa-
rameter B̄/(β̄σ̄) from this procedure differs by a factor of two from that inferred
from physiochemically based modeling. Using the maximum likelihood parame-
ters data-calibrated here, this model nevertheless gives lower atmospheric CO2

concentrations when run to 2100 than the CO2 levels reported in IPCC Third
Assessment Report (IPCC, 2001) as resulting from similar emissions in the B1
scenario. Thus it would not be surprising if the result of small spread in pro-
jected global atmospheric carbon concentrations fails to be robust in future work
against the systematic sampling of larger parameter sets used to calibrate more
complete atmospheric carbon balance models.

Growth of the uncertainty in global average temperatures is illustrated in
Figure 12. The coherence in phasing of periodic fluctuations of temperature
is evident above in Figure 7 and continues into the first two decades of the
twenty-first century. Thereafter coherent phasing amongst the various samples
is rapidly lost. To give an idea of the periods and amplitudes of the dominant
periodic variations, Table VI lists the maximum likelihood values of the peri-
odic corrections to the secular parts of the atmospheric carbon and heat balance
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models. (The numbers under the period listed at the top of each columnar set
of figures are the phase and amplitude corresponding to that period.) Through
the compounding of uncertainties in atmospheric carbon concentrations with
uncertainties in the atmospheric heat balance model parameters, the spread in
projected global average temperatures increases appreciably with time.
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Figure 12. Global average temperature increase for twenty random samples.

TABLE VI

Periods, phases, and amplitudes of periodic corrections

Tropical Emissions:
Period (yr) 40.13 13.00 7.80
Phase (yr from 2000) -2.72 2.93 1.92
Amplitude (%) 2.52 0.72 1.52
Temperate Emissions:
Period (yr) 36.04 19.50 7.80
Phase (yr from 2000) 6.64 -3.41 1.72
Amplitude (%) 6.65 3.68 1.77
Global Temperature:
Period (yr) 64.23 20.64
Phase (yr from 2000) 5.90 -2.13
Amplitude (◦C) 0.101 0.044

While the sets of twenty random samples shown in Figures 9–12 give a qual-
itative impression of ninety-five percent confidence levels, for a quantitative
measure a larger number of samples is needed. Figures 13a–d show cumula-
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tive normal distribution fits to the central ninety-five of cumulative distribution
centiles produced by sorting samples in ascending order. Except for tails of the
distributions that taken together correspond to low probability outcomes, the
cumulative normal fits are sufficiently good that the distributions at each point
can be simply characterized by a mean and standard deviation.
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Figure 13. Cumulative probability distribution centiles (jagged plots), and
cumulative normal distributions fit to the central ninety-five centiles (smooth
curves) for the indicated Julian years for global totals for (a) annual carbon
use rate, (b) cumulative carbon use, (c) atmospheric CO2 concentration, and
(d) increase in average temperature due to anthropogenic carbon use. The
curves labeled 35 and 60 are for 2035 and 2060 respectively.
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The growth of the standard deviation for global average temperature increase
can be well fit by a simple quadratic function of the mean projections for global
average temperature increase. Such fits taken from quinquennially spaced re-
sults like the ones shown in Figure 13d are shown in Figure 14. For the max-
imum likelihood model a power law fit gives an exponent of 1.84, and a sim-
ple quadratic fit is adequate for the present purposes. The results shown in
Figure 14 are for three values of the standard deviations σpriors of the above-
mentioned prior probability distributions. Essentially indistinguishable from
the result for σpriors = 0.3 is that for a 1:2:1 binomial distribution values of 0.2,
0.3, and 0.4 for the these prior standard deviations. This accounts not only for
the prior uncertainty, but in a very rough way also for the uncertainty in that
uncertainty. Evidently the specific assumptions about these prior uncertainties
are not particularly important for the result shown in Figure 14.
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Figure 14. Standard deviation σT versus mode for global average tempera-
ture increase ∆̃T for quinquennially spaced fits of the type shown in Figure 13d
(dots) and for quadratic fits to increases over year 2000 values. Dashed curves
are fits for the indicated standard deviations σpriors for h (the “fossil/non-fossil
energy productivity ratio”) and ᾱ, the global average temperature relaxation
coefficient. The solid curve, for a 1:2:1 weighting of results for σpriors = 0.2, 0.3,
and 0.4, is so close to the result for σpriors = 0.3 that it overwrites the dashed
curve for that reference value of σpriors = 0.3, and also the dashed curve for
σpriors = 0.2 .
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To provide some insight into the sources of projection uncertainty, Table VII
shows the percentage decrease in the standard deviations of fits like those shown
in Figure 13d when an increasing number of modeling parameter sets are sam-
pled instead of being set to their maximum likelihood values. The year chosen
for display in Table VII is 2160, where the spread in projected temperatures
is not rapidly changing. The top entry in Table VII is for sampling the de-
velopment model parameters only, and for each such sample finding and using
the maximum likelihood fits for all other parameters. Table VII shows that
there is an increase from 1% to 18% of the total temperature projection uncer-
tainty when also sampling the uncertainty in future break points and changes
in the slope of carbon intensity of energy production vs. cumulative carbon use.
Also sampling how the calibrated slopes for most recent data extrapolates into
the future raises this number to 23%. In addition sampling the parameters in
the atmospheric carbon balance model still only increases this number to 27%.
Evidently the predominant contribution to the uncertainty comes from the at-
mospheric heat balance model—an unsurprising result given that the data used
to calibrated this model has by far the largest variability. The result shown in
Figure 14 is to be taken as one of the model used here as a whole, because this
result is not reproduced if sampling of the probability distribution for the pa-
rameters in the atmospheric heat balance is replaced by use of their maximum
likelihood values. A larger growth in spread of global average temperatures with
its increase would not be a surprising result if a more complete model of the
atmospheric heat balance with a greater number of a priori uncertain param-
eters were used. The method of plotting this result illustrated in Figure 14 is
nevertheless potentially useful, since such a plot can concentrate the results for
all future times of interest on a single plot with a horizontal axis of finite range.

TABLE VII

Contributions to temperature uncertainty in 2160

Varied % of temperature spread

development index 1
+ intensity future 18
+ also intensity history 23
+ also CO2 balance 27
+ also heat balance 100

It is to be expected that the uncertainty in future carbon intensity has less
important implications for shorter term extrapolations. For example, for the
year 2110 the difference between also sampling the future changes in carbon
intensity slope and just sampling the development index parameters accounts
for 10% instead of Table VII’s (18-1)%=17% of the total temperature projection
uncertainty. For 2060 this difference is only 1%, and sampling all parameters
but those in the atmospheric heat balance models accounts for only 13% of
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the temperature projection uncertainty. Thus, especially for such shorter term
projections, more careful modeling of the atmospheric heat balance than un-
dertaken here is the highest priority for reducing uncertainties in projections of
global average temperature.

All of the projection uncertainties discussed above are in the expected values
of the indicated data sets (e.g. biennial or triennial averages). In addition there
is an approximately normally distributed variation around the expected values
for any scenario. As can be seen from Figures 1, and 4–7, this additional scatter
is generally small except for about ±0.1◦C in the case of biennial averages of
global average temperature. At the global level this random fluctuation is small,
although at finer geographical scale the results of climate fluctuations can be
important even if they average out over a few years.

5. Conclusions and Extensions5. Conclusions and Extensions5. Conclusions and Extensions

The primary conclusion from this work is that it is possible to use econometric
time-series analysis to produce systematically derived probability distributions
to support projections of fossil carbon emissions. These can then be combined
with similarly time-series-calibrated and sampled climate models to produce
systematic projections of atmospheric carbon loading and climate parameters.
Here the econometric analysis is done with a reasonably complete but still ana-
lytically tractable model of the evolution of labor supply, production efficiency,
primary energy production, and fossil carbon use. While the global disaggrega-
tion is done only at the next highest level below a unified global analysis, this
produces the interesting result that there is as yet no empirical motivation for
the idea that the larger populations in developing countries are in the process
of evolving towards a per capita rate of fossil carbon use comparable to that of
developed countries. In this sense these two types of economies appear to be
conditionally convergent (following patterns describable by the same equations)
but not absolutely convergent in the sense of evolving to nearly the same per
capita GDP or per capita energy or carbon use rates.

To conduct a study like this, there are inevitable compromises that have to
be made between completeness and efficiency (c.f. Nordhaus and Boyer, 2000).
Three major simplifications have been made here for the sake of efficiency. Chief
among these simplifications is the choice of the saturating bootstrap model
ȧ = νa(1−a) for a development index, which is used as an independent variable
in place of time for the utility optimization part of the calculations. Through
this choice and the analytic expansion of the Euler-Lagrange equations for utility
optimization outlined in the Appendix, all time is mapped onto the unit interval
0 < a < 1 for the independent variable. The different adjustable coefficients of
(ln a) for each region in the log-linear production functions for primary energy
and GDP take advantage of the expectation that the development index can be
calibrated against population growth rates, without assuming an overly rigid
connection between population growth rates and production efficiency.

A second major simplification is the use of a simple linear dependence of
the additional energy production efficiency factor p on carbon intensity to de-
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scribe the effects of fossil fuel depletion and the increasing marketization of
diseconomies with cumulative fossil carbon use. A piecewise linear model ties
the carbon intensity of energy use to cumulative carbon use with a connection
to a data-calibrated slope break at the end of the historical “age of coal,” after
which economies became petroleum dominated. Samples for fits to historical
data on carbon intensity are projected forward until energy de-carbonization
slows down during a “new age of coal” because it is difficult to reduce the av-
erage carbon intensity below a value corresponding to heavy use of natural gas.
A more complete model of carbon intensity would be based on detailed multi-
disciplinary study of the evolution of the policymaking framework that shapes
decisions on such matters.

A third simplification is that, at least for the present application, the so-
lutions to the resulting Euler-Lagrange equations have been expanded in three
sets of parameters: the capital fraction of energy, the ratio of the fossil carbon
depletion rate to the capitalization time, and the ratio of the development rate
to the capitalization time. Of these only the last is a significant concern with
respect to the balance between computational accuracy and the applicability
of the overall formulation, so expansion in this “capitalization lag” is taken
to one higher order than for the other expansions. For more detailed studies,
particularly where rapidly growing economies like China’s are treated as sepa-
rate regions, numerical integration of the effect of the capitalization lag is both
desirable and feasible.

One more simplification adopted is the technique of subtracting out prein-
dustrial base values before doing time-series calibration, and then adding them
back in to final modeling results for plotting purposes. This approach allows
results to be extrapolated arbitrarily far backward as well as forward in time
without obtaining physically nonsensical results. Of course, extreme extrapo-
lations either forward or backward in time will enter realms where the set of
models used here cannot be expected to be applicable. In the distant future, for
example, population may not approach a steady level near that projected. Pop-
ulation could gradually decline over an extended period of less than replacement
fertility rates, or it could increase due to greater longevity or a long period of
exponential growth of what are now small sub-populations in developed coun-
tries. Also, the atmospheric response model used here does not account for very
long term mixing into deep oceans or ice sheet melting.

For the distant past, the early-time a → 0 regularity boundary conditions
used here are only an approximation that is adequate for a number of capitaliza-
tion times after major economic disruptions. For quantitative comparison with
earlier data, appropriate models of punctuated destruction of capital and labor
would need to be added, though with these included the utility optimization
approach adopted here can track the recovery from such disruptions using nu-
merical integration. An interesting phenomenon observed in preliminary studies
of this type is an overshoot of the background GDP trend, followed by a damped
oscillation around it.

The historical observation of significant departures from the smoothly evolv-
ing trends and multiply periodic variations around them occurring not long be-
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fore the time range of data used fitting and extrapolation in the present study
is precautionary. This observation suggests that including probability distri-
butions for such disruptions in the future would be worthwhile to illuminate
how much broader the spread in outcomes from a more realistic model would
be. One obvious choice is to include a stochastic model of volcanic eruptions,
based on historical data. Other possibilities noted above as not included in the
present analysis include major wars, pandemics, and breakdowns in economic
functioning on the scale of China’s “Great Leap.” There is considerable a pri-
ori uncertainty in the probability and scale of such occurrences, but at least
there are historical time-series data available to calibrate probability distribu-
tions for parameters important in modeling how economies have reacted to such
disruptions. A project currently in progress should provide a broader and more
finely geographically resolved set of background data on international energy
production and trade in support of such studies (Rethinaraj and Singer, 2007).

To the extent that their effects extrapolate smoothly into the future, gradual
progress in technology and social organization that allows increasing productiv-
ity and adoption of less carbon intensive energy production is implicitly ac-
counted for in the present approach. However, major technological innovations
have significantly perturbed established patterns of energy and fossil carbon
use in the past. Examples include the widespread adoption of the use of coal
in steam engines, and the adoption of technology for drilling water wells to
the extraction of fluid fossil fuels. The possibility of such future dramatic de-
velopments can be allowed for within the context of the present approach, for
example by basing probability distributions for future changes in the slope of
the carbon intensity of energy production on detailed analysis of physical con-
straints on energy technologies and detailed studies of market response to new
technological innovations. Based on current knowledge there is a large a priori
uncertainty concerning when dramatic technological breakthroughs might occur
and how much impact they will have, so allowing for such possibilities should
increase the spread of outcomes for global carbon emissions and their conse-
quences. Here, the focus has just been on developing a convenient methodology
for folding information from historical time-series data into such analyses. The
samples of changes in the slope of carbon intensity as a function of cumulative
carbon shown in Figure 8 offer a single illustrative example of how this can be
generalized beyond just extrapolating historical trends.

For the level of analysis in this paper, there are four major motivations for
combining an analytically solvable model of utility maximization with atmo-
spheric response models whose solutions can be expressed in the form of the
integrals decribed in the Appendix. First, all of the results to be compared with
data can be computed readily using either power series expansions or other
well-known and readily available computation methods for the one required hy-
pergeometric function. Second, all the integrals required for data calibration
can be expressed analytically or as sums of contributions of data points to
quadratures. This avoids the need to imbed, within the calibration procedures,
Runge-Kutta-type integrations (Press, 1986) or coarsely gridded integral-form
utility optimizations using software such as the General Algebraic Modeling
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System (GAMS). Third, all of the formulas used are analytically differentiable,
which streamlines the formulation of searches for maximum likelihood points.
This feature also facilitates finding the second derivatives of likelihood used in
constructing exact and approximate multivariate t-distribution approximations
to various posterior probability distributions in support of random sampling
of a priori uncertain parameters. Fourth and finally, with careful examination
the physical meaning of analytic formulas is more apparent than solutions that
can only be found through finite difference techniques or through gridded in-
tegral maximization procedures. Moreover, whether expanded analytically or
not, the differential Euler-Lagrange formulation easily lends itself to solution
on the finest desired timescales for comparison even to annual time-series data.
This is particulary helpful when combining the secular evolution of functions of
time with periodic corrections in order to come up with overall models whose
differences from data are indistinguishable from iid according to the statistical
tests used.

Even the remaining complexity in the present model could be avoided by us-
ing a more empirically and less theoretically grounded approach. However, there
are both conceptual and practical advantages to putting up with the complex-
ity imposed by the choice of a dynamic optimization approach. The conceptual
advantage is that each piece of the secular model is anchored to an underlying
hypothesis whose applicability is econometrically tied to data. In some cases,
such as the saturating bootstrap model ȧ = νa(1−a) for the development index,
the underlying model is extremely simple and in this case functionally equiva-
lent to the empirical choice of a logistic function. In this particular case, the
challenge of theory formulation is comparable to the difficulty that any complete
model of economic development has in dealing with “social capital.” This is the
important but difficult to directly measure combination of rule of law and other
societal factors that allow for economic recovery on a capitalization timescale
from the most devastating disruptions in developed countries. In other cases,
such as for the model used for dependence of carbon intensity on cumulative
carbon use, the “theory” adopted is only loosely tied to environmental concerns
and could use considerable improvement as described below. Also, purely em-
pirical formulas have been used here for the modest but not always negligible
periodic corrections to the secular trends computed from the theoretical model.
Ideally these non-secular corrections would also be based on theoretical models
of relevant processes such as business cycles and energy cartel stability. Never-
theless, the adoption of a reasonably complete and empirically adequate model
for secular trends, with periodic corrections that correlate in meaningful way
with historical events, provides a potentially useful starting point for extend-
ing and refining the analysis without reliance on proliferation of an increasing
number of arbitrary empirical modeling parameters.

A question of immediate interest that can be examined with the model de-
scribed here is how projection uncertainty can be expected to decline with accu-
mulating experience. This question can be addressed by using the present model
to produce synthetic projected data sets, and then combining the entire accu-
mulated time-series “data” to reproduce the analysis of projection uncertainty.

41



The reason this is interesting is that the level of uncertainty can have an impor-
tant impact on policymaking, allowing some to call for action on the grounds of
risk reduction and others to insist on waiting until more accurate projections be-
come available. In this context it would be particularly interesting to couple the
type of econometric analysis described above with more complete atmospheric
carbon and heat balance models and a more theoretically grounded analysis of
the interaction between policy choices influencing the level of carbon emissions
with the evolution of climate parameters. One way to approach this is to include
the effect of climate modification on economic production and then repeat util-
ity optimization jointly vs. separately with respect to fossil carbon utilization.
Under the hypothesis that a given level of global per capita benefit is needed to
overcome vested interests resisting effective action to reduce carbon emissions,
a more complete analytic theory of probability distributions for future carbon
emissions and climate effects could then be developed. In this context it would
also be desirable to use a finer level of disaggregation to support game theory
modeling of the distribution of the benefits of cooperative action amongst major
negotiating blocks (c.f. Ipsen et al., 2001). Preliminary studies with the present
model using eleven groups of countries sometimes used in Intergovernmental
Panel on Climate Change (IPCC, 2001) studies suggest that this is tractable,
although it may require revisiting numerical integration of the Euler-Lagrange
equations for utility maximization in the case of economies like China that have
experienced rapid economic growth and concomitant substantial capitalization
lags.

Finally, in a related work, the overall past and future energy production
has been computed for time-series calibrated subdivision of primary energy into
competing pairs of primary energy sources (Rethinaraj, 2005). These include
fluid fossil fuels, coal, water-driven electricity production, wind and solar ther-
mal electricity production, and the competition between various sources of nu-
clear fuel. Such analysis can complement the kind of extensions suggested here
by providing insight into the practicality at a more detailed level of making the
asymptotic approach to non-fossil economies that is both physically unavoid-
able and intrinsic to the approach used in this paper. The relatively complete
but analytically tractable theoretical framework and the extensive and flexible
database developed to support the results presented in this paper should provide
a sound basis for such work.
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Appendix. Derivations and ComputationsAppendix. Derivations and ComputationsAppendix. Derivations and Computations

This appendix first provides an outline of expansion methods for solving Euler-
Lagrange equations for utility optimization. More details can be found in Rethi-
naraj (2005). The methods used in a series of computational modules for sam-
pling probability distributions are then described.

The integral of total discounted per capita utility of consumption is maxi-
mized subject to the material balance constraint for carbon utilization. In di-
mensionless variables, the material balance constraint for each region is
u̇ = εfw, where u is the ratio of cumulative carbon utilization to its long-
term limit value, f is the ratio of the carbon intensity of energy production to
its initial value, w is the ratio of energy use rate to its long term limit value, and
ε is a different constant in each region of piecewise linear fit to the dependence
on carbon intensity to cumulative carbon use. Defining

L = aθe−ρt C1−θ/ (1− θ) + κβaθe−ρtC−θ (fw − u̇/ε)

the control variables {k, l, f, u,K} and the Lagrange multiplier κ are determined
by the Euler-Lagrange equations

0 =
δL
δk

=
δL
δl

=
δL
δf

=
δL
δu

− d

dt

(
δL
δu̇

)
=
δL
δK

− d

dt

(
δL
δK̇

)
=
δL
δκ

The constraint u̇ = εfw also requires βaθe−ρtC−θ(fw− u̇/ε) = 0, and when
the constraint is written in this form the resulting differential equations are
more compact. The equations δL/δk = δL/δl = 0 give the exact result k = l.

The next step is to show that to lowest order in both ε and β we have k = 1,
and thus l = 1. Multiplying the Euler-Lagrange equation δL/δu = d(δL/δu̇)/dt
by (ε/β)K−1eρta−θCθ gives

(ε/β)K−1eρta−θ Cθ
(
δL/δC)(δC/δY )Y δ lnY/δu− (κ/K)δ(fw)/δu

= K−1eρta−θCθ d
(
Ke−ρtaθC−θκ/K

)/
dt

Noting that δ lnY/δu = βδ ln p/δu and that the remaining terms multiplying
(ε/β) on the right hand side are of order 1, it can be seen that κ/K ∼ ε.
This means that the correction containing the factor κ/K in the δL/δu =
d(δL/δu̇)/dt equation, −ϕ(k/F )/(1 − βk) + 1/F − α(κ/K)fw = 0, is of or-
der ε. Thus to lowest order in both ε and β we have k = 1.

The expansion in the small capital fraction of energy, β, is very useful because
the solution for GDP to lowest order can be obtained separately from the rest
of the problem and the result is sufficient for the rest of the analysis. Define
a function F = K/Y proportional to the capital intensity of production and a
functionG = (α−1−r)K/C proportional to the capital intensity of consumption.
Mutliplying the Euler-Lagrange equation δL/δK = d(δL/δK̇)/dt by eρta−θCθ

gives, to lowest order in β, with G′ = dG/da and F ′ = dF/da,

−zδ(1 + δ)FG− δη−1z(1 + δ)F ′G+ δη−1ω−1zG′(1 + δ)F
= (1 + δ)FG− (1 + δ)G
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α−1G− r(1 + δ)FG− (1 + η/ω)νz(1 + δ)FG+ δω−1η−1θ−1(1 + δ)F ′G

= (α−1 − r)(1 + δ)F

These equations can algebraically be solved iteratively for coefficients to any
order in series expansions in δ. The result of interest here is

F ≈
(
1 + aδ + azγ2δ

2
)
/ (1 + δ)

where γ2 = 1+ξ/ω+γ1(1−ξ−1) and γ1 = (1− (1+ξ−1)/θ)(α−1−r). Including
division by the factor 1+δ in the result for F gives it the very useful property that
the resulting series exactly satisfies regularity boundary conditions at early time
(a→ 0) and large time (z = 1− a→ 0) if at least the first order approximation
terms F1 = (1+aδ)/(1+ δ) are retained. This expansion is only asymptotically
convergent, and we do not find it useful to keep more terms than included in F1.
However, in Table II we do report the maximum value γ2(δ/2)2 of azγ2δ

2 to
give an idea of the size of the omitted terms.

It remains to integrate the fossil carbon balance constraint u̇ = εkfw over
each of the piecewise linear portions of the dependence of carbon intensity on
cumulative carbon use. For model projections and historical data fitting, this is
done starting from a reference point a4 where the integrated carbon use in di-
mensional terms is known from the carbon intensity fitting procedure described
below. The result for the historical data fitting done here is given in the main
text in terms of

S[a] =
∫ a

0

da aψ(1 + aδ)α/ω/(za) = AppellF1[ψ,−α/ω, 1, ψ + 1,−aδ, a]

Here, with (d)n = d(d+1) . . . (d+n−1) for any quantity d, the hypergeometric
function on the right hand side of this equation is (Wolfram, 2003)

∞∑
m=0

∞∑
n=0

(−aδ)man(ψ)m+n(−α/ω)m(1)n/ (m!n!(ψ + 1)m+n)

For repeated calculation of AppellF1[ψ,−α/ω, 1, ψ + 1, aδ, a] at fixed values of
a and δ over a narrow range of ψ, it is convenient to expand this result as a
third order Taylor series around a reference value of ψ. This reference value is
taken to be the maximum likelihood value for the probability distribution for
which it is being calculated.

Next we describe the sampling methods used to produce the results in the
main text. After a general introduction, to give an idea of the modularity
of the approach used, each such description is preceeded by the name of the
Mathematica notebook (Wolfram, 2003) used to execute it.

First we note that periodic corrections to secular fits are done only after data
with even spacing along the abscissa are first prepared. Following Wei (1979,
pp. 261-62), we halve the number n of data points and round down to the nearest
integer to obtain n2 = bn/2c. For frequencies Fk = 2πk/n with 1 ≤ k ≤ n2, let
ēm be the residuals between the uncorrected fit and the data and the Fourier am-
plitudes be B̄k = (2/n)

∑n
m=1 ēm cos[mFk] and Āk = (2/n)

∑n
m=1 ēm cos[mFk]
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for k = 1 . . . n2, except that Ān2 = (1/n)
∑n
m=1 ēm cos[mFk] if n is even. (Here

and below, k is a dummy index, not the energy sector capital parameter.) The
periodicity amplitudes are P̄k = (n/2)(Ā2

k + B̄2
k) except that P̄n2 = nĀ2

n2
if

n is even. Ordering these in a sequence P̄j of decreasing size with increasing
index j, Wei notes that the significance criterion for each amplitude is to an ex-
cellent approximation (νfree+1−j) (1− τj)

νfree−j where τj = P̄j/((
∑n2
m=1 P̄m)−

(
∑j
m=1 P̄m)). Here νfree = n − M where M is the number of parameters

in the fit. The test used for significance of nearest neighbor correlation is∑n−1
m=1 D̄mD̄m+1/

∑n
m=1 D̄

2
m, where D̄m are the residuals between the data and

the fits, with the fits including periodicity corrections where applicable (Wei
1979, p. 23). Generalizing these analyses to the set of eleven presumably inde-
pendent time series used here, we require that each of these minimum values of
for these statistical tests is greater than 1− (1/2)1/11 = 0.061.

Another generic comment concerns three types of methods used for sampling
parameters in which models are respectively linear, nearly linear, or not nearly
linear (“fully nonlinear”). In all cases, what is of interest here is the marginal
probability distribution integrated over the standard deviation describing the
spread of the data around the theory result.

For linear parameters the result is a multivariate-t distribution, whose co-
variance matrix is designated asX ′X by Box and Tiao (1973, 115). Such param-
eters are sampled by using the singular value decomposition of the covariance
matrix to construct a linear transformation of independent variables that makes
the probability distribution circularly or hyperspherically symmetric about the
origin. The radial variable then has a F distribution that can be analytically
sampled (Box and Tiao, 1973, 117). With only one additional variable, the
circular angle of the resulting circle is uniformly sampled. The other cases en-
countered here have more than two additional variables, for which the surface of
the resulting unit hypersphere has rectangular coordinates (cos ζ0)

∏K
k=1 sin ζk

for values of K up to two less than the total number of parameters. In such
cases ζ0 is sampled uniformly from 0 to 2π and the cumulative distribution
function for (sin ζk)k is uniformly sampled for each k up to and including K by
the “transformation method.” This method involves simply setting each such
normalized cumulative distribution function to a uniform random number from
the unit interval and solving numerically for the corresponding value of ζk (as
in Press et al., 1986, Section 7.2).

For nearly linear parameters we use a generalization of the rejection method
described by Press et al. (1986, Section 7.3). In principle this can be done
by choosing random locations covering the entire area like that including the
points shown in Figure 3, and then rejecting samples for which a pseudo-random
(hereafter “random”) number from the unit interval is less than∫ ∞

−∞
d(ln[σ])

n∏
j=1

(
2πe2 ln[σ]

)−n/2
e
−(δj/e

ln[σ])2
.

2

where the δj are the residual differences between the data and the theory
(c.f. Press et al, 1986, Section 7.3). This integral is the probability of the data
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given the theory, integrated over the a priori unknown standard deviation σ,
under the assumption that there is no prior information about the value of lnσ.
(There is by contrast always prior information available about σ since it is pos-
itive definite, as noted in standard statistical reference works such as Box and
Tiao, 1972.) In practice the area over which this integral is appreciable covers
only a thin swatch of parameter space, so an efficient rejection sampling tech-
nique requires a reasonable analytic approximation to this integral as a starting
point. This approximation uses the (2m+ 2)× (2m+ 2) covariance matrix for
a multivariate student’s t distribution as a starting point, where, for example,
the number of different periodic corrections to the logistic functions described
in the legend to Figure 1 is m = 2 for the tropical region and m = 5 for the
temperate region.

In the approach used here, an approximate probability distribution is first
obtained by expanding the sum of the squares of the residuals between data
and theory as a power series around the maximum likelihood values of the
relevant parameters and including only the quadratic terms. This resulting
“Hessian” approximation yields a probability distribution that is multiplied by
a number large enough to make it everywhere just equal to or larger than the
exact probability distribution for all of the samples ultimately chosen. The
approximate distribution is sampled as described in the previous paragraph,
and such samples are accepted if and only the ratio of the exact to approximate
probabilities at the sampling point is greater than a random number chosen
uniformly from the unit interval.

For fully nonlinear parameters, a marginal probability distribution is first
obtained by analytically integrating over the linear parameters (Box and Tiao,
1979, pp. 145–146). Then cubic spine fits to samples spaced at one seventh or
more of the sampled range are obtained over the “region of interest” for the
rest of the parameters. The result is integrated over all but one parameter,
which is then sampled by the above-mentioned “transformation method.” For
this sample, the process is repeated for the remaining nonlinear parameters
one at a time; and when this is completed the linear parameters are sampled
as described above. The “region of interest” is that for which the probability
of a sample is at least a minimum value of interest, here taken to by 0.001
or less. Where adjustable multipliers of the periodic corrections frequencies
picked out by discrete Fourier power spectrum analysis are included, these are
sampled only within a specified unit range, as described below for the cases
of fossil carbon use and the atmospheric heat balance. The spline fits just
described are also extremized to find starting points for the maximum likelihood
parameter searches, for which the linear parameter optima are first eliminated
analytically. (For nearly linear cases the spine fit is not necessary because the
linear approximation can be used to find an analytically determined starting
point for the maximum likelihood search). In some cases analytic elimination
of linear parameters yields formulas that are too cumbersome for the built-in
Mathematica software to find a maximum likelihood. In such cases, the sum
of squares of residuals minimized over the other parameters is surveyed and fit
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with a quadratic function of the remaining parameter in the neighborhood of
its optimum value in order to pinpoint the optimal value.
GLOBAL:GLOBAL:GLOBAL: The parameters assumed to be global universal constants are the
capital fraction of production α, the inverse θ of the intertemporal substitutabil-
ity of consumption, the capital depreciation rate r̄, and the pure rate of time
preference ρ̄. It is actually the labor fraction of production ω = 1 − α that is
estimated from data on labor fraction of compensation (Gollin, 2002). What are
appropriate methods for derivation and appropriate application of probability
distributions for some of these parameters is a question not without controversy,
as discussed for example by Füssel (2007). The approach taken here is to be
as transparent as possible about the data bases and methods used, leaving the
reader to decide whether these or alternative approaches are the most useful for
any particular application.

Early estimates of the intertemporal substitutability of consumption from
data on returns on investment gave both large and highly varied estimates of
its inverse (c.f. Hall, 1988). Ogaki and Reinhart (1998) critiqued the methods
used by Hall and others (Hansen and Singleton, 1996) and estimated values for
1/θ of 0.329–0.447 depending on the values of other parameters in the analysis,
based on post-WWII data through 1983 for the United States. As detailed
below in the subsection on estimation of θ below, it is instead estimated here
from a regression of international survey data on “happiness” and “satisfaction”
(Myers and Diener, 1995). We took from this survey the average of responses on
the same numerical scale for ratings of happiness and satisfaction for countries
other than reforming communist ones and did a regression against per capita
income as detailed below. Reforming communist countries were omitted on the
grounds of being far from equilibrium, since they reported an anomalously low
response that was much lower than before the collapse of the Soviet Union where
data was available.

In principle the survey data of Myers and Diener could give a direct mea-
sure of how utility relates to per capita consumption. In practice the estimation
method used here also raises many questions (c.f. Füssel, 2007). Are the answers
to questions posed in different languages are really commensurate and represen-
tative of what economic decisions attempt to discount and maximize? Have
other important hidden variables been neglected, even after rejection of clearly
anomalous non-equilibrium results data from reforming communist economies?
While the method used here assumes that the responses to the survey questions
are a measure of what decisions on use of production are attempting to maxi-
mize, the idea that per capita consumption taken to some power is also a useful
measure of what decisions on used of production are attempting to maximize is
also just an assumption. Any such assumption is a matter of conjecture, with
the primary practical question of interest here being whether the resulting model
is functionally useful. The method adopted here for estimation of θ is chosen
on the basis of transparency of its ease of implementation and the global reach
of of the data used. The result can be readily related to previous literature in
that it gives an estimate comparable to if somewhat larger than the value θ = 1
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assumed, for example, by Nordhaus (1944) and by Manne et al. (1995), and
not so much smaller than that inferred by Ogaki and Reinhart from data from
financial data from the United States as to have a critically important impact on
the overall model results of primary interest here. The reason for this is that θ
affects the results of interest here only to first order in the expansion parameter
δ = θξν. However, we do note that doubling θ from the maximum likelihood
estimate of 1.345 obtained here would increase the largest value of γ2(δ/2)2 of
the second order capitalization lag correction, for the temperate region, from
nearly 0.1 to nearly 0.4. Inclusion of the factor (1+ δ) in the denominator when
analytically expanding the capitalization lag F , is a help in this regard, because,
by making the approximation F1 = (1 + δa)/(1 + δ) exactly fit the boundary
conditions, it makes this approximation close to the exact numerical solution
even when the first order correction δa is not small. Neverthless, that numerical
integration of the Euler-Lagrange equations should be examined if values of θ
this large enough to make γ2(δ/2)2 ∼ 0.4 are thought to be relevant.

Useful data of global coverage was difficult to come by for the capital depre-
cation rate. Since the capital depreciation rate r̄ is also taken to be a universal
constant, it was estimated as described below from time-series data available for
the United States (Bishoff and Kokklenberg, 1987). However, we note a recent
report leading to a value of 0.14/yr for geometric mean of depreciation estimates
from five tropical region countries (Côte d’Ivoire, Ghan, Kenya, Zimbabwe, and
the Philippines, from Bu, 2006). This is larger than other estimates based on
developing countries of 0.04/yr (Nehru and Dhareshwar, 1993) to 0.07/yr (East-
erly and Rebelo, 1993). The ∆V/V value for r̄ given in Table I is derived only
from a single data set and thus should be understood as being smaller than
what would likely result from a more internationally based approach. The data
chosen for the present study before the availability the results from Bu (2006)
led to an estimate for r̄ that somewhat fortuitously lies in between Bu’s results
for developing countries and the above-mentioned results based on information
from developed countries. We do take note that Bu (2006) points out how us-
ing a universal depreciation rate may not be the most appropriate approach
for studies involving both developed and developing countries. This suggests
that allowing for a dependence of the depreciation rate on the development in-
dex might be eventually be desirable. Since the depreciation rate r̄ only affects
the results here through a correction of first order in the capitalization lag,
δ = θξν̄/(r̄ + ρ̄), we have not delved into such complications here.

It would also not be surprising if the pure time rate of preference ρ̄ also
depended on development (c.f. Rao, 2000). Preliminary studies indicate that it
is mathematically tractable to allow ρ̄ to be linear function of the development
index. Again, however, since the value of ρ̄ also only affects the results of
primary interest here through a correction of first order in the capitalization lag,
δ = θξν̄/(r̄+ρ̄), the additional complications that such an approach would bring
did not seem necessarily for the present study. Thus, based on a theory derived
from work of Ramsey (1928) and described for example by Barro and Sala-i-
Martin (1995, Section 2.1), a universal constant pure rate of time preference is
estimated from data on the differences between inflation-adjusted interest rate
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and θ times the rate of growth of per capita income (WDI, 2005). Details of
these various calculations are as follows:

α: The complement α=1-ω of the estimates of the labor shares of com-
pensation for nα = 31 countries (Gollin, 2002) are assumed to have a Beta
distribution, i.e. proportional to αRα−1ωSα−1. The estimator used for α is sim-
ply the mean < α > of the data for α. Estimators R̂ and Ŝ for Rα and Sα satisfy
< ln[α] >= Ψ[R̂] − Ψ[R̂ + Ŝ] and < ln[ω] >= Ψ[Ŝ] − Ψ[R̂ + Ŝ] where Ψ[x] =
d ln Γ/dx and Γ[x+ 1] = xΓ[x] defines Γ[x]. Also following Bickel and Doksum
(1977, p. 44) the “spread” reported in Table I is (R̂Ŝ(R̂+ Ŝ)2(R̂+ Ŝ + 1)))1/2.

θ: An estimate θ̂ = 1−m̂θ for the inverse of the intertemporal substitutabil-
ity of consumption is obtained from a least squares fit of the form ln[(100 −
wellbeing)/100] = mθ ln[wealth/1000] + bθ to a set of nθ = 41 estimates of self-
reported “wellbeing” as a function of average per capita income (“wealth”) for
all countries for which data was available (Myers and Diener, 1995; Maddison,
2001; Rethinaraj, 2005), with the exception of reforming communist countries
for which the reported “wellbeing” is taken to reflect an unusual situation far
from equilibrium. Here “wellbeing” is the average of levels of “happiness” and
“satisfaction.” The marginal distribution for θ integrated over bθ is assumed to
have a student-t distribution with nθ-2 degrees of freedom.

r̄: A time series r̃j for j=1...nr=31 annual estimates the overall capital
depreciation rate for the United States (Bischoff and Kokklenberg, 1987) is
assumed to have residuals independently and identically distributed around the
values r̂ + θ̄1 cos[π(Nrj/nr)] + θ̄2 sin[2π(Nrj/nr)] for some constants θ̄1 and θ̄2.
Here Nr = 2 is the dominant amplitude of the finite Fourier decomposition of
the difference between the r̃j and their mean value. The marginal distribution
for r̄ has a student-t distribution with nr − 3 degrees of freedom.

ρ̄: The estimate of the pure rate of time preference used here follows an
analytic rather than normative approach. That is, observational data is used
insofar as possible to calibrate a well established model, rather than impos-
ing a normatively chosen value. To make this clear, the model used here is
described in some detail. Following a model of utility maximization of the
utility of per capital household income described by Barro and Sala-i-Martin
(2004, Section 2.1) and motivated by earlier work of Ramsey (1928), the pure
rate of time preference is estimated from real interest rates less θ times growth
rates of per capita gross domestic product. The real interest rate is the nom-
inal lending rate less the rate of inflation. For cases with high inflation rates
this involves taking the difference of two large numbers. On the assumption
that the values of these numbers are distributed with common variance, it
is thus approximately appropriate to weight the contribution from each pair
thereof by the inverse of the square of the inflation rate. The data on lending
and inflation rates comes from the World Bank (WDI, 2005), and economic
growth rates are computed from data from Maddison (2001). Under these as-
sumptions, the probability distribution for one observation can be rewritten as(
2πσ̄2

ρW̃
2
j

)−1/2

exp[− (ỹj − ρ̄)2 /
(
2σ̄2

ρW̃
2
j

)
]. Here the elements of a vector ỹyy are

ỹj = R̃j − θ̂g̃j , where R̃j are real interest rates and g̃j refers to the rates frac-
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tional annual growth in GDP. Multiplying these distributions gives the result

L (ρ̄, σ̄ρ|ỹyy) =
(

1/
∏nρ

j=1

(
2πσ̄2

ρW̃
2
j

)1/2
)

exp
[
−

∑nρ

j=1

(
(ỹj − ρ̄) /W̃j

)2

/
(
2σ̄2

ρ

)]
.

Following Box and Tiao (1972), this is multiplied by a prior probability distri-
bution for σ̄ρ proportional to 1/σ̄ρ to obtain the posterior probability distribu-
tion P (ρ̄, σ̄ρ|ỹyy) for the data given the vector ỹyy of data from which an estimate
ρ̂ is to be found. Maximizing with respect to ρ̄ gives the weighted estimate
ρ̂ =

(∑nρ

j=1

(
ỹj/W̃j

))
/

(∑nρ

j=1

(
1

/
W̃j

))
. What we are interested in here is

the marginal distribution for ρ̄ integrated over the “nuisance parameter” σ̄ρ.
Generalizing the derivation of Box and Tiao to this weighted case, note that∑nρ

j=1

(
(ỹj − ρ̄) /W̃j

)2

=
∑nρ

j=1

(
(ỹj − ρ̂) /W̃j

)2

+ (ỹj − ρ̂)2
∑nρ

j=1

(
1

/
W̃j

)2

.

Defining s̄2 = (1/νρ)(
∑nρ

j=1(ỹj − ρ̂)2/W̃j)2)nρ/
∑nρ

j=1

(
1

/
W̃ 2
j

)
where νρ =

nρ − 1, we have that P (ρ̄, σ̄ρ|ỹyy) = k̄ρσ̄
−nρ−1
ρ exp[(νρs̄2 + nρ (ρ̄− ρ̂)2)/(2σ̄ρW̄ 2)]

where we set σ̄ρW̄ 2 = σ̄ρnρ/
∑nρ

j=1

(
1

/
W̄j

)2, and choose the constant k̄ρ to get
the total probability to integrate to 1. Integrating this result over σ̄ρ exactly
follows the similar integration for the unweighted case as in Box and Tiao, thus
giving a t-distribution for the marginal probability density for ρ̄ integrated over
σ̄ρ:

P ( ρ̄|yyy) =
s̄/
√
nρ

Beta [νρ/ 2, 1/2]√νρ

[
1 +

nρ (ρ̄− ρ̂)2

νρs̄2

]−(νρ+1)/2

When nρ is very large, as in the case of interest here, this can be approximated
by a normal distribution with mean ρ̂ and variance s̄2, whose square root is
reported as the spread for this parameter.
DEVELOP:DEVELOP:DEVELOP: The logistic development index a = 1/(1+exp[−ν̄(t̃− t̄0)]) increases
approximately linearly with time near the inflection point where a = 1/2. The
next term in the power series expansion around a = 1/2 that gives the linear
approximation a ≈ 1/2 + (t̃ − t̄0)ν̄/4 is −ν̄3(t̃ − t̄0)3/48) ≈ −(4/3)(a − 0.5)3.
The population growth rate ν̄z = ν̄(1 − a) used here to calibrate the logistic
model parameters is thus usefully written in the form

ν̄z ≈ ν̄/2− (t̃− t̄0)(ν̄/2)2 = ϑ̄1 + ϑ̄2t̃

where ϑ̄2 = −(ν̄/2)2 and ϑ̄1 = (ν̄/2)(1+ t̄0ν̄/2), and thus t̄0 = (2/ν̄)(2ϑ̄1/ν̄−1)
gives ν̄ = 2

√
−ϑ̄2 and t̄0=(ϑ̄1/

√
−ϑ̄2 -1)/

√
−ϑ̄2. Inserting these expressions

into ν̄z = ν̄(1− 1/(1 + exp[−ν̄(t̃− t̄0)])) gives a formulation for d ln[P̄ ]/dt̃ that
can be fit with a function that is nearly linear in {ϑ̄1, ϑ̄2} for a reasonably
wide range around a = 1/2. The nearly linear fit in these variables is sampled
as described above and then converted back to the variables whose values are
reported herein.
GDP:GDP:GDP: The expression for the logarithmic derivative of GDP vs. development
is d ln[G̃DP]/da = 1 + ξ + (α/ω)d lnF1/da. Here F1 = (1 + aδ)/(1 + δ) where
δ = νθξ with ξ = η/ω. The logarithmic derivative ad lnF1/da is of order the
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ordering parameter δ, and (d ln G̃DP/da − 1) is known once the calibrations
and sampling described above are done. We thus have here a single-parameter
regression that is nearly linear in ξ, so it is dealt with as described above for
nearly linear cases.
INTENSITY:INTENSITY:INTENSITY: The carbon intensity of energy use f̄ is fit with a piecewise linear
function of each region’s cumulative carbon use. By visual inspection, the data
on this is grouped into sets separated by the approximate “break point” years
{1948, 1974} for the tropical region and {1953, 1970} for the temperate region.
For each such interval the size of the minimum interval in cumulative energy use
that contains at least nav data points is computed, where nav ≥ 2. The data is
divided into equal intervals of this length, and a linear fit to the data in each such
interval produces a set of estimates f̃j at the midpoints x̃j of these intervals. A
linear fit to this processed data is then computed for each line segment, and the
cumulative carbon use at the point where each of the fits is equal to the previous
one is computed. Thus, the data itself decides where the break points are, with
the approximate input values providing only a starting point for this search.
The above-mentioned statistical tests are then run to check that no significant
periodicities or nearest neighbor correlations in the residuals. For completeness,
this procedure is repeated for earlier {tropical, temperate} approximate break
points {1862, 1860} corresponding approximately to the first use of oil, and
{1892, 1914} corresponding respectively to about the time of 1894–95 Berlin
conference agreement on colonial divisions and the First World War. However,
these earlier fits are not further used in the calculations and are not required to
be free of significant periodicities. The point of fitting the data in comparatively
small intervals is to avoid the complications of adding and matching periodicity
corrections to piecewise continuous fits. The resulting linear fits are sampled as
described above.
EMIT:EMIT:EMIT: The formulas Θ̄2J−1 cos[2πNJj/n] + Θ̄2J sin[2π(NJj/n)] with values of
1, 2, and 5 for NJ with 1 ≤ J ≤ 3 describe periodic corrections to natural log-
arithms of fossil carbon use for both regions. However, the periodic corrections
have larger amplitude than the cases described above and will be included in the
source term for the atmospheric carbon balance and thus also the atmospheric
heat balance. While the impact of the higher frequency corrections will largely
be averaged out in the atmospheric balance integrals, for the lowest frequency
correction it is desirable to allow N1 to be an adjustable parameter. Sampling
in this case again uses a rejection method. First, for this case the likelihood of
the form described above is integrated analytically over σ and the periodicity
amplitudes. For a each of set of values of N1 between x and 1 + x inclusive,
where x solves the equation 1 + x = 1/x, a Hessian approximation to the de-
pendence on the remaining two parameters Ē and ψ is analytically integrated
and the result fit with a cubic spline function of N1. The fully nonlinear, nearly
linear, and linear parameters are then successively sampled as described above.
CARBON:CARBON:CARBON: The above atmospheric carbon balance equation given above can
be reduced to quadratures to give fractional atmospheric carbon concentration
increment c = csS0 +BS1 +S2 where impact of the initial condition is given by
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S0 = e−σ̄(t̃−t̄S). The integral S1 = σ̄e−σ̄t̃
∫ t̃
t̄S
dt̄ eσ̄t̃F̃netβ̄/C̄0 defines the response

to cumulative emissions, and S2 = e−σ̄t̃
∫ t̃
t̄S
dt̄ eσ̄t̃Ẽnetβ̄/C̄0 defines the response

to the rate of emissions. By approximating historically observed annual and
cumulative carbon emissions Ẽnet and F̃net as step functions, this result can be
conveniently analytically integrated to give a result that is linear in the initial
value cs and the coefficient B̄. With triennial averaging of the data, no periodic
corrections are required in this case. The fully nonlinear and linear parameters
are sampled as described above.
HEAT:HEAT:HEAT: Taking data far enough back in time that the effect of the difference
between the preindustrial base temperature T̄0 and the initial temperature can
be neglected, the above atmospheric heat balance equation can similarly be
reduced to quadratures to give T̃ = T̄0 + µ̄e−ᾱt̃

∫ t̃
t̄s
dt̃ eᾱt̄ ln c. This result is

again linear in two of the three fitting parameters (T̄0 and µ̄) and also in the
amplitudes of the two frequencies of periodic corrections required in this case.
In this case it is desirable to let both of the periodic correction frequencies vary,
each over the range where the probability density is at least 0.001 times its
maximum value.
PROJECT:PROJECT:PROJECT: Taking as input the sets of random samples of modeling parameters
obtained as described above, the maximum likelihood result and ninety-nine
random samples are projected forward using analytic formulas through carbon
emissions, coupled with numerical integration of dẼnet/dt̃ and the atmospheric
carbon and heat balances. To accomplish this, random samples of future carbon
intensity of energy production are chosen as described in the text and illustrated
in Figure 8. Solutions of the carbon balance constraint of the form given in the
text are obtained by integrating between the break points in the slope of carbon
intensity vs. cumulative carbon use.
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TABLE A.1

Roman Symbols and Functions

Symbol Meaning

a = 1/(1 + exp[−νt]) development index
b = (h− 1)/h decrease/maximum efficiency ratio
B = B̄/(β̄σ̄) near surface carbon saturation
c = (C̃ − C̄0)/C̄0 fractional CO2 concentration increase
C consumption rate
f carbon intensity of energy use
F = K/Y αF =capital intensity of production
F ′ = dF/da derivative of F with respect to a
G = (α−1 − r)K/C K/C =capital intensity of consumption
G′ = dG/da derivative of G with respect to a
h fossil/nonfossil efficiciency ratio
k βkK is capital for primary energy∗

k fk fitting time range number
K total capital
l βla is labor for primary energy
m number of different frequencies∗

M number of fitting parameters
p = 1 + (h− 1)f energy production efficiency factor
r = r̄t̄ depreciation rate
t = (t̃− t̄0)/t̄ time
u cumulative carbon used, with u̇ = εfw
w = paζ(kK)α(la)ω primary energy production rate
Y = [aη((1− βk)K)α((1− βl)a)ω]ϕ wβ production rate is Y/α
z = 1− a need for development

AppellF1=
∑∞
m=0

∑∞
n=0(−aδ)man(ψ)m+n(−α/ω)m(1)n/ (m!n!(ψ + 1)m+n)

hypergeometric function
(d)n = d(d+ 1) . . . (d+ n− 1) rising factorial
Beta[x1, x2] = Γ[x1]Γ[x1]/Γ[x1 + x2] Euler Beta function
L=aθe−ρt C1−θ/ (1− θ) + κβaθe−ρtC−θ (fw − u̇/ε)

Lagrangian
ln natural logarithm
exp[x] = ex exponential function
S[a] =

∫ a
0
da aψ (1 + aδ)α/ω /(za) integral for fossil carbon balance

∗ k and m do not have these meanings when used as subscript integers
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TABLE A.2

Subscripted Roman Symbols

Symbol Meaning

bθ constant in wellbeing vs. wealth fit
cs initial condition for c
d1 log-normal distribution sample for fbreak

d2 log-normal sample affecting slope after fbreak

d3 log-normal sample used with fact
d2 log-normal sample affecting final slope
fact most likely second break point for f
fbreak = Max[0, fnow − (fnow − fgas)d1]

first break point for f
fgas carbon intensity for natural gas
fnow carbon intensity at last fitting point
fk = 2πk/n periodic correction frequencies
F1 = (1 + aδ)/(1 + δ) capitalization lag function approximation
Fk periodicity frequencies
mθ slope in wellbeing vs. wealth fit
nav number of points per interval for f̃j
nr number of depreciation rate data
n2 = bn/2c n/2 rounded down to nearest integer
nα number of labor compensation share data
nθ number of wellbeing estimates
nρ number of data used for estimating ρ̄
NJ carbon use number of periodic corrections
Nr dominant Fourier component for r̄
Rα term in Beta distribution in exponent of α
Sα term in Beta distribution in exponent of ω
S0 = e−σ̄(t̃−t̄s) initial condition effect on temperature
S1 = σ̄e−σ̄t̃

∫ t̃
t̄s
dt̄ eσ̄t̃F̃netβ̄/C̄0 temperature response to cumulative CO2

S2 = e−σ̄t̃
∫ t̃
t̄s
dt̄ eσ̄t̃Ẽnetβ̄/C̄0 temperature response to rate of emissions
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TABLE A.3

Roman Symbols with Overbars

Symbol Units Meaning

Ān various periodicity correction amplitude
Āk = (2/n)

∑n
m=1 ēm sin[mfk]

various sine correction amplitude
B̄k = (2/n)

∑n
m=1 ēm cos[mfk]

various cosine correction amplitude
B̄ (ppm/yr)/EJ near surface carbon saturation
C̄0 ppm (by mass) base level CO2 concentration
D̄m various residuals
ēm various residuals before periodic corrections
Ē GT/yr scale factor for carbon burning rate
f̄k GT/EJ carbon intensity intercepts
k̄ρ yr−nρ−1 probability integral normalization
m̄k 1/EJ carbon intensity slopes
P̄base billions of people base year populations
P̄∞ billions of people long term populations
P̄k various Fourier power spectrum amplitudes
r̄j 1/yr depreciation rate data
s̄2 = (1/νρ)(

∑n
j=1(ỹj − ρ̂)2/W̃j)2)n/

∑n
j=1

(
1

/
W̃ 2
j

)
1/yr2 weighted variance

t̄ = 1/(r̄ + ρ̄) yr capitalization time
t̄0 Julian yr development index inflection time
t̄s Julian yr heat emissions reference time
t̄S Julian yr carbon balance reference time
T̄0

oC base for T̃ minus reference value
T̄n yr periodicity correction periods
w̄ EJ/yr sustainable primary energy use rate

W̄ 2 = n/
∑n
j=1

(
1

/
W̃j

)2

1/yr2 harmonic average of W̃ j
2
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TABLE A.4

Roman Symbols with Overscripts other than Overbars

Symbol Units Meaning

B̂ dimensionless maximum likelihood for B
C̃ ppm (by mass) atmospheric CO2 concentration
Ẽ = ĒaψfpF

α/ω
1 GT/yr carbon burning rate

f̃k = f̄k − m̄kũ GT/EJ carbon intensity
f̃j GT/EJ carbon intensity at values x̃j of ũ
g̃j GT/EJ fractional annual GDP growth rates
Ẽnet = ηnetẼ GT/yr carbon emission rate
F̃net GT cumulative carbon emissions
G̃DP k$US1990PPP GDP
m̂θ dimensionless maximum likelihood for mθ

P̃ billions of people population
r̃ 1/yr depreciation rate
R̂ dimensionless estimator for Rα
R̃j 1/yr real interest rates
Ŝ dimensionless estimator for Sα
t̃ Julian yr time
t̂0 Julian yr development inflection time estimator
T̃ = µ̄e−ᾱt̃

∫ t̃
t̄S
dt̃ eᾱt̄ ln c oC temperature change

ũ GT cumulative carbon use
W̃j 1/yr weights for interest rates
x̃j GT midpoints of intervals with nav data
ỹj = R̃j − θ̂g̃j 1/yr elements of the vector ỹyy
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TABLE A.5

Greek Symbols without Overscripts

Symbol Meaning

α = 1− ω capital fraction
β energy fraction
γ1 = (1− (1 + ξ−1)/θ used to find γ2

γ2 = 1 + ξ/ω + γ1(1− ξ−1) second order lag coefficient
Γ Gamma function with Γ[x+ 1] = xΓ[x]
δ = νθξ capitalization lag constant
δj residuals
εk = w̄t̄m̄k carbon depletion rates ε
ζ energy productivity exponent
ζk angles for hypersphere sampling
η GDP productivity exponent
ηnet carbon emitted/burned
θ intertemporal substitutability inverse
κ Lagrangian multiplier
ν = ν̄t̄ development rate
νfree = n−M correlation test degrees of freedom
νρ degrees of freedom for ρ
ξ = ζ/ω ratio of exponents
ρ pure time rate of preference
σ residuals’ standard deviation
σB prior standard deviation for B
σpriors value for standard deviations σprior

ϕ = 1− β non-energy fraction of production
ψ = 1 + ζ + αξ energy use rate exponent
Ψ = d ln Γ[x]/dx digamma function
ω labor fraction of production
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TABLE A.6

Greek Symbols with Overscripts

Symbol Units Meaning

ᾱ ppm/GT thermal relaxation coefficient
β̄ 1/yr converts total carbon to CO2 ppm
∆̃T = T̃ + T̄0 1/yr temperature from reference value
θ̄1 1/yr depreciation cosine amplitude
θ̄2 1/yr depreciation sine amplitude
ϑ̄1 1/yr population growth rate constant
ϑ̄2 1/yr2 approximate growth rate slope
Θ̄2J 1/yr carbon use cosine amplitudes
Θ̄2J−1 1/yr carbon use sine amplitudes
θ̂ dimensionless estimator for θ
µ̄ oC/yr greenhouse effect coefficient
ν̄ 1/yr development rate
ρ̄ 1/yr pure time rate of preference
ρ̂ =

(∑n
j=1

(
ỹj/W̃j

))
/

(∑nρ

j=1

(
1

/
W̃j

))
1/yr maximum likelihood estimator for ρ

σ̄ 1/yr carbon clearance rate coefficient
σ̄2
ρ GT/yr variance scale for ρ̄
τ̄n Julian yr periodicity phases
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