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Maximizing the joint probability of obtaining series of global average temperatures and rates of
global thermal energy accumulation yields estimates of parameters in a global heat balance equa-
tion. One such parameter, denoted β with units ◦C/(W/m2), is the equilibrium ratio of global
average temperature to a constant radiative forcing in the absence of large volcanic eruptions.
With β, a parameter cth determines the rate of relaxation µ = 1/(βcth), in inverse years, towards
an equilibrium after radiative forcing is made constant. Twentieth and 21st century global average
temperatures and 1991–2018 measurements of accumulated global thermal energy associated with
radiative imbalance are used to estimate β and µ (and thus cth), the effective efficacy of nomi-
nal radiative shielding from tropospheric aerosols, and the global average temperature difference
between a reference pre-industrial temperature and an average over two more recent decades.

1. Background

This is the fourth in a series of reports describing components of a revision of an earlier form [1]
of the Climate Action Gaming Experiment (CAGE). The previous reports are referred to here as
CAGER1, CAGER2, and CAGER3. Their respective titles are Climate Action Game Experiment
Motivation and Role of Radiative Forcing, Calibration and Extrapolation of a Simple Global Carbon
Balance Model, and Non-anthropogenic Influences on Global Average Temperature. Those three
reports describe information needed to calibrate parameters in the global heat balance equation

(1.1) cthτ
′ = F − τ/β

using historical estimates of global average temperature and rates of global thermal energy ac-
cumulation. In this equation, τ is operationally defined as the difference between global average
temperature (herein just called temperature) and a value that would be in equilibrium with zero
radiative forcing. τ ′ is the annual rate of change of τ . Dividing both sides of this equation by
cth illustrates why that parameter can be referred to as the thermal inertia. The larger cth is, the
smaller is the prompt effect on τ of increasing radiative forcing.

2. Radiative Forcing

By construction here, β is the ratio τ/F eventually obtained if radiative forcing F approaches
a constant. However, with persistent recurrence of large volcanic eruptions, such an equilibrium
is never achieved. For this reason, CAGER3 describes a method for removing from estimates of
annually averaged temperature the transient effects on τ of large volcanic eruptions. The cooling
effects from samples of a statistical model of future volcanic eruptions [2] could be overlain on
extrapolations based on the work described here, if that were desired. CAGER3 also describes
methods for removing transient effects of Schwabe c. 11 year solar irradiance cycle variations,
and of variations of global average temperature correlated with the El Niño Southern Oscillation
(ENSO). The results obtained here are thus meant only to describe averages over Schwabe and
ENSO variations. Pursuant to the results described in CAGER3, adjustable multipliers of these
nominal transient temperature effects are included here to account both for a range of uncertainty
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reported for those transient effects [3] and for the different context here than that in which estimates
for those effects were derived.

Radiative shielding from tropospheric aerosols has the largest recently estimated uncertainty
of all the contributions to radiative forcing used here. The Working Group 1 contribution to
the International Panel on Climate Change Sixth Assessment Report (here called AR6) combines
such uncertainties as the square root of sums of squares [4]. Following that procedure and setting
aside stratospheric aerosols from volcanic eruptions, uncertainty from the sum of tropospheric
aerosol radiation interactions and aerosol cloud interactions together is 1.62 times as large as the
uncertainty in radiative forcing for all of the other contributions described in CAGER1, CAGER2,
and CAGER3. For this reason, total radiative forcing is written as

(2.1) F = Fna + caFa

Here Fa is the (negative) radiative forcing from tropospheric aerosols. Fna sums all other radiative
forcing except for Schwabe cycle variations and stratospheric aerosols from volcanic eruptions.
Figure 2a shows how other radiative forcing Fna (i.e. F with ca = 0) is reduced by adding to it
negative radiative forcing caFa for ca = 1 and for the value ca = 0.37 discussed below.

3. Global Average Temperature

In this report, temperature data used in estimating the parameters β, µ, and ca is limited to
annually and globally averaged thermometer measurements. How much these estimates differ from
a temperature in equilibrium with zero radiative forcing is subject to an amount of uncertainty that
turns out to have consequences for the present exercise. Hawkins et al. [5] identified the period 1720–
1800 as a longer time to average over that is expected to have about the same radiative forcing as a
shorter-term average around 1750. This idea is consistent with an only 0.004◦C difference between
the 1745–1755 and 1720–1800 averages of a composite of multiple non-thermometer proxies for
thermometer temperatures [6].

Hawkins et al. provide two types of estimates used here for differences between 1986–2005 and
eighteenth century values. For reasons described below in Appendix A, one such estimate of ap-
proximately 0.82◦C is used as a reference starting point for the work here. An alternate estimate
of approximately 0.70◦C, based on some 1720–1800 Dutch and Central England thermometer mea-
surements, is used as an example of how fixing a lower value without allowing for its uncertainty
leads the procedure adopted here to produce results that are less compatible with GISTEMP values
τG from the Goddard Institute for Space Studies [7].

4. Global Heating and Energy Balances

With radiative forcing F approximated as constant in each calendar year, Appendix A notes that
the exact analytic solution for the annual average temperature in the kth year after 1749 for k > 1
is

(4.1) τk =

Fk(1 − κ)/µ+

i−j∑
j=2

κ2e(k−j)µFj

 /cth

Here κ = (1 − e−µ)/µ, and µ = 1/(βccth) as noted above. Expanding in µ as a small parameter,
κ is approximately 1 − µ/2. Thus, in any given year the change in τ averaged over that year from
emissions Fk in that year is (Fk/cth)(1 − κ)/µ ≈ (1/2)Fk/cth. The contribution to τ averaged
over that year due to emissions Fj in one of the previous years depends on the number (k − j)

of intervening years approximately as e−(k−j)µFj/cth. While these approximations illustrate the
structure of the solution, it is the exact result in equation 4.1 that is used here.

Estimates of the accumulated earth energy imbalance (EEI) between incoming and outgoing
radiative energy [8] provide a useful supplement to the global average surface temperature data [9].
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The rate of change of that energy imbalance is equal to the annual rate of change E′th of global
stored energy Eth. Appendix A gives the value of a coefficient cE needed to convert annual changes
E′th derived from reported values of Eth in ZJ (i.e. in units of 1021 Joule) to W/m2 averaged over
the earth’s area. Setting that imbalance equal to the left-hand side of equation 1.1 gives

(4.2) cthτ
′ = cEE

′
th

Using the EEI data is particularly important if radiative forcing grows exponentially with time,
as it approximately does in the middle curve in Figure 2a. That is because for such exponential
growth it can be shown that temperature data alone cannot distinguish between a combination of
a smaller values of β and cth and a combination of larger values of β and cth.

5. Results

Using the procedure described in Appendix A, maximizing the probability of the temperatures τG
being obtained as functions of the parameters listed in Table 1 gives the results described in this
section. Results are shown in Figure 1a for two assumptions about the difference between the initial
condition temperature and the GISTEMP temperature estimates. Including an overbar to indicate
an average over the 1986–2005 years used for the above-mentioned Hawkins et al. estimates, the
difference between a GISTEMP input entries and a temperature in equilibrium with forcing F = 0 is
written as τG−τG+τH+∆τvs+τ0. The τG entries are differences from a 1951–1980 average, and their
1986–2005 average is larger by τG = 0.42◦C. τH = 0.82◦C is the above-mentioned estimate of how
much the 1986–2005 average temperature exceeds a temperature in equilibrium with pre-industrial
radiative forcing. An additional correction ∆τvs is needed because Hawkins et al. correct for ENSO-
related temperature variations but do not remove transient effects of large volcanic eruptions and
Schwabe solar cycle variations as done here. For the cases shown in Figure 1a and 1b respectively,
the values of those corrections, rounded to the nearest 0.01◦C listed are respectively ∆τvs = 0.02◦C
and 0.01◦C, as discussed in Appendix A. Then τ0 is the remaining correction for uncertainty in τG
that then remains to be estimated, along with the other parameters, by maximizing the probability
of obtaining the data given the parameters.

τ0=-0.02°C, ca=0.37

τ0=-0.14°C, ca=0.63
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τ0=-0.27°C, ca=1

1950 1960 1970 1980 1990 2000 2010 2020
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Year

°C

Figure 1.Figure 1.Figure 1. (a) Difference between solution τk in equation (4.1) of equation (1.1) and τH = 0.82◦ with
probability maximizing value τ0 = −0.02◦ (solid curve) and fixed value τ0 = −0.14◦ (dashed curve),
compared to transient-corrected data (dots and dashed curves) less τH . (b) As in Figure 1a but with
tropospheric aerosol forcing efficacy ca = 1 and resultant probability maximizing τ0 = −0.27◦C.

The solid curve in Figure 1a adjusts both τ0 and the multiplier ca of (negative) tropospheric aerosol
forcing to find a probability-maximizing fit. The dashed curve does the same except with parameter
τ0 fixed to be −0.14◦, as if the limited number of 1720–1800 thermometer measurements referenced
by Hawkins et al. provided an accurate estimate of τ0. With this smaller value of τ0, the numerator
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τ in the loss term τ/β in the heat balance equation is smaller. That is compensated for by making
the tropospheric aerosol multiplier ca larger at 0.63. That compensates by including more negative
radiative shielding in the driving function Fna + caFa and thus making that driving term also
smaller. However, that approach pushes the dashed curve below the best fit curve c. 1980, which
in turn is compensated with estimates for β and cth that push the dashed curve above the smooth
curve in and before the 1950s.

Table 1. Probability Maximizing Parameters

Log10(P/P̂ ) 0 -3.1 -11.2 Log10 of probability ratio
β (◦C/(W/m2)) 0.518 0.507 0.581 equilibrium sensitivity
µ (1/yr) 0.068 0.105 0.415 thermal equilibration rate
ca 0.37 0.63 1 tropospheric aerosols multiplier
τ0 (◦C) -0.02 -0.14 -0.27 temperature offset estimate

∆τvs (◦C) 0.02 0.02 0.01 transients correction
cs 0.44 0.44 0.44 solar transient multiplier
cv 1.05 1.04 0.86 volcanic transient multiplier
ce 1.08 1.14 1.10 ENSO transient multiplier
cth ((W/m2)(yr/◦C)) 28.32 18.84 4.17 thermal inertia
1/µ = βcth (yr) 14.66 9.55 2.41 thermal equilibration timescale

ca=0

ca=0.37
ca=1
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Figure 2.Figure 2.Figure 2. (a) Radiative forcing with different contributions from tropospheric aerosol shielding
including none (ca = 0 dashed curve), probability maximizing estimate (ca = 0.37 solid curve),
and AR6 nominal values (ca = 1 dots). (b) Ratio of maximized probability to the maximized
probability with ca = 0.37, as a function of ca.

The first two columns of numbers in Table 1 list the fitting parameters for the cases plotted in
Figure 1a. (The italic bold type entries in Table 1 are fixed parameters; the others are probability
maximizing parameters.) The numbers in Table 1 and most of the numbers on figures and in the
text here have at most two digits after the decimal point for visual simplicity. The calculations use
unrounded numbers, and some of the same results with more digits are listed in subsequent report
CAGER6. The first row in Table 1 also lists base ten logarithms of the ratio of probability of the
data given the fitting parameters to that for the τ0 = −0.02◦C and ca = 0.37 case. That probability
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measure for the τ0 = −0.14◦C and ca = 0.65 case is 0.0008 times that for the τ0 = −0.02◦C and
ca = 0.37 case.

If the tropospheric aerosol forcing is fixed at ca = 1, as in Figure 1b, then the probability-
maximized fitting parameters call for a solution with τ0 = −0.27◦C. That fit has a very much lower
probability of the data given the model parameters, as listed in the first row of numbers in Table 1.

The present work uses a simple energy balance model tuned to the observational record, as
suggested by Hawkins et al., albeit one somewhat simpler than the two examples of energy balance
models that those authors cited. Given the methodology differences, the small size of a τ0 =
−0.02◦C addition to the Hawkins et al. estimate referred to above may be somewhat fortuitous;
but it does point out that the approach used here is not necessarily at odds with that derived using
a more complicated analysis.

Figures 2a and 2b are presented to clarify the points made about tropospheric aerosol shielding
that are illustrated by the results in Figures 1a and 1b. Figure 2a shows total radiative forcing
without tropospheric aerosol shielding (ca = 0), with the nominal AR6 tropospheric aerorsol shield-
ing ca = 1, and with the maximum probability result ca = 0.37. The ca = 1 case has total radiative
forcing dropping after 1955 and not recovering to its 1955 value until 1975. Figure 2b plots the ratio
of the maximized probability for various fixed values of ca to that for the probability maximizing
value of ca = 0.37. For ca > 0.6, that ratio is very small.

6. Implications of Results

The CAGE project is designed to be accessible both operationally and conceptually to a wide
range of policy negotiation simulation designers and participants. This goal places a premium on
simplicity of the physical balance equations used. The resulting difference in methodology from
studies using one or more complex global climate models (GCMs) limits comparison with results
from such complex models largely to qualitative comments. For example, results presented above
in Figures 1b and 2b and in Table 1 suggest that using an unmodified AR6 tropospheric aerosol
shielding with the equations and solution methods used here is inappropriate. This should not,
however, be taken to point out anything more than is already known about the challenges of dealing
with tropospheric aerosols in GCMs. In part due to geographic and seasonal differences between
aerosols and well-mixed greenhouse gases, the efficacy of a suggested level of global radiative forcing
from aerosols is specific to the setup and execution of each GCM. Indeed, the overall concept
of global radiative shielding from tropospheric aerosols is more useful for communicating ideas
about the importance of its temporal evolution than it is of operational utility in a GCM supplied
with tropospheric aerosol source terms and enough atmospheric chemistry and radiative transport
detail to track their influences on climate change. Operational constraints on the CAGE design
nevertheless require inclusion of a specific formula for radiative forcing of tropospheric aerosols
when seeking a solution of global heat balance equation (1.1) that is consistent with the historical
observations used.

Also, the formulas used here are based on a widely used notion that radiative forcing can usefully
be expressed as a difference from a time period when global average temperature was approximately
constant. It is then necessary to specify how that initial temperature differs from ones used in
equation (1.1. The dependence on τ0 of estimates µ and ca in the first two columns of numbers
in Table 1 suggests that it is indeed important to account for uncertainty in the value of that
parameter.

One promising feature of the plots in Figure 1a is that the dots and intersections of the jagged
lines are visually identical. This is even though the plotted values of transient-adjusted global
average temperature data depend on values of the scaling parameters cs, cv, and ce that differ
from each other in the calculations leading to the dots and the intersections of the jagged lines.
The jagged lines in Figures 1a and 1b are also very similar, with an exception of the value of the
transient-corrected temperature data for 1992. That is the year of the peak cooling effect following
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the mid-1991 Pinatubo eruption. For Figure 1b, a value of the volcanic scaling parameter with
cv < 1 allows the data to dip below the fitting curves in that year. This observation helps account for
the difference in 1992 for the jagged lines in Figures 1a and 1b. However, as long as the parameters
surveyed are close to the maximum probability parameters, fixing the transient correction scalings to
their probability maximizing values can be useful for subsequent work investigating joint probability
distributions for the other parameters, as described in subsequent report CAGER6.

As described in Appendix A, a number of statistical tests of assumptions of statistical inde-
pendence and normality of distributions of residuals between data and equation solutions revealed
one outlier that is dealt with as a unique incidence of heteroskedasticity. However, the very small
probability ratios listed in the first row of numbers in Table 1 do not account for the possibility of
systematic rather than random differences between data and equation solutions. The subsequent
study described in report CAGER6 that examines joint probability distributions for up to four of
the model parameters based on such a statistical model can thus only put a lower limit on the
overall uncertainty associated with historically calibrated extrapolations. Nevertheless such an ex-
ercise could at least allow for a systematic approach to opening the question of how negotiation
simulation participants respond to information about uncertainties in the physical consequences of
implementing different emissions modification policies.

Appendix A. Probability Maximization Methods

The probability density for the data as a function of the model parameters is taken to be P = PτPE
where

(A.1) Pτ = (2πσ2τ )−nτ/2e−((1/2)εεετ ·εεετ/σ
2
τ )

and

(A.2) PE = (2πσ2E∗)
−nE∗/2e−((1/2)εεεE∗·εεεE∗/σ

2
E∗)(2πσ2out)

−1/2e−((1/2)ε
2
out/σ

2
out)

Here εεετ is a vector of nτ = 74 values of τG + (τH − τG + a0) − τ with the elements of τ given
by the analytic solution in equation 4.1. The vector εεεE is a list of nE∗ = nE − 1 = 27 values of
cEE

′
th − cthτ

′, and εout is the “outlier” value for cEE
′
th − cthτ

′ computed from differences from the
years 2002 and 2001. The constant CE is equal to 1021/(AEsy) with AE = 5.1 × 1014m2 the area
of the earth, sy = 31557600 the average number of seconds in a year after 1901, and values of E′th
in ZJ/yr. The annual growth rates of global energy from the radiative forcing less radiative loss
imbalance are approximated as Ek+1 − Ek with Ek the energy changes since 1960 for 1990–2018
from von Schuckmann et al. [8].

The overall solution to the heat balance equation with F equal to a different constant Fk for
each kth year after 1749 is a sum of the solutions τk with a zero source in every year except the kth
one. Dividing equation 1.1 by cth and setting gk = Fk/cth, µ = 1/(cthβ), and sk = t− tk gives, in
differential equation notation, dτk/dsk = gkuk − µτk. Here uk = 1 during year tk and 0 otherwise.
Rewriting the result as d(eµskτk)/dsk = gkuke

µsk and using the initial condition τk = 0 when sk = 0
gives τk = gkµ(1 − e−µsk) for 0 ≤ sk ≤ 1. Integrating forward with 0 source from a resulting value
of τk = κgk(1 − e−µ)/µ = κgk when sk = 1 gives τk = κgke

−µsk for sk ≥ 1. Averaging this result
over each year and summing the resulting averages gives the formula above in equation 4.1.

The formula for ∆τvs correction to the input temperature data τG that is mentioned in the first
paragraph in Section 5 is

(A.3) ∆τvs = cvτv + csτ s

Here τv = 0.024◦C is the amount by which the average temperature for 1986–2005 after removing
transient volcanic cooling exceeds that average without removing that cooling effect if cv = 1. The
corresponding correction for the Schwabe cycle effect with cs = 1 is −0.015◦C. With the probability
maximizing values of cv and cs listed in Table 1, the resulting values of ∆τvs are 0.018◦C, rounded
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to 0.02◦C in the first colum in Table 1, and 0.014◦C rounded to 0.01◦C in the third column in
Table 1.

Appropriate prior probability distributions for στ and σE are taken to be proportional to their
inverses. Evaluating

∫∞
0 dστ

∫∞
0 dσE∗

∫∞
0 dσoutP/(στσE∗σout) [10] gives a result that is a constant

times

(A.4) (εεετ · εεετ )−nτ/2(εεεE∗ · εεεE∗)−nE∗/2(e2out)
−1/2

The value of the constant multiplying this expression is not needed, since it will be maximized with
respect to the model parameters by minimizing

(A.5) L = −(nτ/2) ln(εεετ · εεετ ) − (nE/2) ln(εεεE∗ · εεεE∗) − (1/2) ln(e2out)

There are 74 years from 1946–2019 and 28 averages from 1991.5–2017.5 of years used to compute
values of E′th. Starting with temperature data from 1946 avoids a World War II measurement
anomaly from 1941–1945 [11]. This approach also avoids a period of lower global geographic
coverage for temperature measurements during and before WWII, as illustrated by the upper
curve in Figure 3a. Once per decade reported GISTEMP global coverage fractions from 1910
through 1940 are nearly constant with an average of 0.7, similar to that shown in Figure 3a. For
GISTEMP, that number then jumps to 1 in 1950 because the GISTEMP averaging method allows
for some weight in geographical locations within 1200 km of measurement locations. A recent
analysis that includes geographic coverage and additional sources of uncertainty suggests about
twice as much GISTEMP uncertainly from 1905 to the start of WWII than after WWII [12].
Figure 3a also compares temperature estimates from the Hadley Centre Climate Research Unit
(HADCRUT) [13, 14] to those from the Goddard Institute for Space Studies estimates used here.
There are some larger differences in the decade before 1906 than thereafter. No use is made here of
temperature data before 1906, not even for comparison with results using temperature data from
1906–2019 to results using temperature data from 1946–2019 as in Table 2. The data range chosen
for E′th avoids a period of less complete measurements prior to the 1990s [8]. Not surprisingly, the
part before 1990 of the earth energy imbalance estimates plotted in Figure 3b shows larger scatter
than in the later estimates.

GISTEMP °C

HADCRUT5 °C

HADCRUT5 Coverage
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Figure 3.Figure 3.Figure 3. (a) Un-modified annual average temperature estimate differences from a 1951–1980 aver-
age (lower jagged curve for GISTEMP and dots for HADCRUT5); and fractional global temperature
measurement coverage (upper curve, solid for 1946–2019 GISTEMP data and dashed for earlier
data). (b) Earth energy imbalance estimates less 1960 value.

The choice of data ranges used here also avoids years that lead the data sets to include indications
of temporal autocorrelation in the residuals between the data and the maximum probability fits.
Including temperature data before 1939 leads to an estimated temporal autocorrelation regression
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of type AR1. Including data prior to 1991 for the earth energy imbalance leads to an estimated
temporal autocorrelation of moving average type MA1. If these correlations were properties of the
entire physical system, the AR1 type would indicate a bias in the parameter estimates with AR1
included in the analysis. That should not be a problem here for extrapolating observable future
temperatures, since it is the actual temperatures and not the underlying parameter values that are
of primary interest for CAGE studies. If the temporal autocorrelation is a property of the earlier
data measurements alone, then including the earlier data would only unnecessarily complicate
the analysis. Accounting for MA1 temporal autocorrelation would not be expected to bias the
parameter estimates. However, it would both change a subsequent joint probability distribution
and likely tractably but substantially complicate the computational analysis thereof.

Other questions about statistical assumptions used are whether each of the two data streams used
are heteroskedastic, skewed, kurtotic, or interdependent. Testing the maximum deviation ratio of
absolute value to standard deviation residuals [15, 16] identifies one earth energy imbalance outlier
point at a confidence level of 95.3%. That is for the 2001.5 EEI residual. That result motivated
allowing that residual to have a different σ than the other EEI residuals. (For the τ residuals,
the corresponding confidence level for the residual with the largest absolute value was 69.9% and
not taken to require a heteroskedastic treatment.) The resulting kurtosis of the residuals at 2.50
for temperature and 3.32 for EEI, as compared to 3 for a normal distribution. The skewness of
temperature residuals is small at 0.38. With homoskedasticity assumed for all of the EEI residuals,
the skewness of the EEI residuals is 0.75. With the 2001.5 EEI residual allowed to have a different
σ, the skewness of the rest of the EEI residuals is 0.31. After applying this one heteroskedasticity
correction, the departures from normality were not taken to be severe enough to introduce the
complication of dealing with non-normal alternatives to equations (A.1) and (A.2).

Table 2. Alternative Statistical Results

Type β µ ca τ0 cth

Reference 0.518 0.068 0.37 -0.02 28.3
Homoskedastic 0.526 0.062 0.36 -0.02 30.5
E′th outlier dropped 0.526 0.062 0.36 -0.02 30.5
Temperature from 1906 0.505 0.066 0.18 0.06 30.1

Table 2 compares results for fits to β, µ, ca, and τ0 as in Table 1 to results using three alternative
analyses. Except with some more digits to emphasize differences, the numbers in the first row are
the same as Table 1, i.e. with the 2001.5 EEI residual allowed to have a different σ. For the next
row in Table 2, all of the EEI residuals are forced to have the same σ. In that case, the large outlier
forces a larger estimate for cth = 1/(βµ).

Neither of the results from the two different statistical models shown in Table 2 suggests changing
the conclusion that an efficacy of ca = 1 for the nominal AR6 tropospheric aerosol shielding
is incompatible with the model and data used here. The heteroskedastic approach changes the
weighting of portions of the data stream used but does not change the estimates for β appreciably.
Dropping an cEE

′
th − cthτ

′ outlier with a 2.6 times the root mean square has little effect on the
probability maximizing values of β and ca.

There is some interdependence of the underlying global average temperature and earth energy
imbalance data. In particular, a small portion of that energy imbalance is stored in the atmosphere,
land and ice (about 12%) [8] and in a top ocean layer that is well mixed on a time short compared
to the 26-year span of time of the EEI data used. The effective depth of the well mixed top ocean
layer has been estimated to be about 75 meters [17]. The value of cth converted to (J/m2)/◦C and
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divided by the ocean fraction 0.709 of the earth’s area and by the volumetric heat capacity of sea
water gives a total effective average depth of 307 meters for the heated part of the ocean in the
global heat balance model, in the approximation that all of the energy imbalance is stored in the
ocean. Due at least in part to this overlap in data sources for τ and Eth, a subsequent CAGER6
report on uncertainty analysis under the assumption of independence of measurements of global
average temperature and earth energy imbalance will just be aimed at estimating a lower limit on
the overall uncertainty.

Also shown in Table 2 are parameters estimated with the same analysis used for the reference
case but with the temperature data range extended back to 1906. That was done primarily to see
whether the mismatches with data shown for alternative cases in Figures 1a and 1b result from using
only part of the available temperature data. A temperature difference 0.21◦C is subtracted from the
1941–1946 GISTEMP values to account for a World War II sea surface temperature anomaly [11]
times the ocean fraction of the earth’s surface area. Using the 1906–2019 temperature data thus
corrected, the ca = 1 case shows the same type of mismatches with the data as in Figure 1b. The
case with the longer temperature data used yields a probability maximization value of ca = 0.18.

Since the data extended back to 1906 have AR1 temporal correlation, the estimates in the last
line of Table 2 would be biased to different values if the AR1 autocorrelation were accounted for
in the analysis. The parameters listed in Table 2 could nevertheless be used as an alternative
to extrapolating future temperatures with AR1 accounted for, sampling how observations chosen
from an AR1 distribution differ from the extrapolation, and fitting a curve through the result.
However, given that the variation of a WWII measurement anomaly during years 1941–1945 [11] is
not very clear, and in light of the lower global coverage back to 1906 shown in Figure 3a, that more
complicated approach is not adopted here. Instead, the point of including the ca = 0.18 result in
the last line of numbers in Table 2 is to note that using a larger data range does not appear to
challenge the conclusion that an efficacy factor of ca = 1 multiplying the nominal AR6 tropospheric
aerosol forcing is incompatible with the database and analysis method used here.
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