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Probability distributions for extrapolated global average temperature with different atmospheric
carbon emissions options are based on data-calibrated probability distributions for four parameters
affecting solutions of a global heat balance equation. These parameters control climate sensitivity,
thermal inertia, efficacy of radiative forcing from tropospheric aerosols, and the difference between
thermometer measurements and the temperature in equilibrium with an earlier radiative forcing
approximated as having been constant. Inputs used for data calibration are annually averaged
global average temperature and rates of change of earth’s stored energy driven by an imbalance
between radiative forcing and losses. Principal component analysis allows derivation of a quadriva-
lent normal distribution that provides useful approximations to the probability of the observations
as a function of the four uncertain parameters. Random samples of the probability distributions
are used to define and plot cumulative probability distributions for the response of extrapolated
global average temperature to different anthropogenic atmospheric carbon emissions futures.

1. Background

This is the sixth in a series of reports describing components of a revision an earlier form [1] of the
Climate Action Gaming Experiment (CAGE). The five previous reports in this series developed
the inputs for the extrapolations described here. The titles of those reports are

CAGER1: Climate Action Game Experiment Motivation and Role of Radiative Forcing
CAGER2: Calibration and Extrapolation of a Simple Global Carbon Balance Model
CAGER3: Non-anthropogenic Influences on Global Average Temperature
CAGER4: Global Heat Balance Model Parameter Calibration
CAGER5: Extrapolations of Global Average Temperature, Sea Level Rise, and Ocean pH Change

CAGER1 gives equations and parameters for fits to historical data needed for most of the contri-
butions to radiative forcing used here. CAGER2 gives equations and parameters for a set of
extrapolations of atmospheric concentrations < CO2 > of carbon dioxide. CAGER3 gives parame-
ters for extrapolation of solar radiative forcing after removal of c. 11 year Schwabe cycle variations.
It also provides corrections, used here, to global average temperature input data to account for
transients effects correlated with the El Niño Southern Oscillation (ENSO), with Schwabe cycle
solar irradiance variations, and with stratospheric aerosols from large volcanic eruptions. CAGER4
gives probability maximizing parameters needed for extrapolation of global average temperature
by solving the global heat balance equation

(1.1) cthτ
′ = Fna + caFa − τ/β

Here Fa is a nominal estimate of (negative) radiative forcing from tropospheric aerosols [2], and Fna
is all other radiative forcing except for from Schwabe cycle solar irradiance variations and effects of
large volcanic eruptions discussed in CAGER3. The parameter ca is referred to here as the tropo-
spheric aerosol efficacy. This equation can be solved after replacing the thermal inertia parameter
by the thermal equilibration rate µ = 1/(βcth). The parameter β, with units of ◦C/(W/m2), is
referred to here as the climate sensitivity. This parameter is not to be confused with what is
commonly called the equilibrium climate sensitivity and has units of ◦C [2]. CAGER5 presents
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deterministic outcomes for implementation of five future global anthropogenic atmospheric carbon
emissions policies. The present report presents probability distributions for those extrapolated
temperatures at future dates.

CAGER4 contains an expression for the probability P (β, µ, ca, τ0, cs, cv, ce, στ , σE∗ , σout) of ob-
taining a set of 74 annually and globally geographically averaged temperature estimates and 27
estimates of the rate of change of global stored energy driven by global radiative imbalance, as de-
scribed below in Appendix A. Of the ten arguments of this function, only the first three are needed
for extrapolating global average temperature for a given evolutions of the radiative forcing functions
Fna and Fa. Not being needed for temperature extrapolations, the last three arguments are treated
as nuisance parameters and integrated over. Also not needed for temperature extrapolations in the
absence of large volcanic eruptions and averaged over Schwabe solar cycle and ENSO oscillations
are the temperature transient amplitude parameters {cs, cv, ce}. These could be integrated over,
but a simpler approach that gives very similar temperature extrapolations is to fix them at their
values by maximizing the probability function integrated over {στ , σE∗ , σout}. Doing so gives a
function of four variables that can be approximated by a function of the form

(1.2) P4(β, µ, ca, τ0) = ((2π)2σ1σ2σ3σ4)
−2e−(1/2)

∑4
i=1(vi/σi)

2

where vi are linear functions of {β, µ, ca, τ0}. Denoting the parameters {β, µ, ca, τ0} as respec-
tive values of xj for j = 1 . . . 4 and their overall probability maximizing values as x̂j , the linear
relationship between vi and {β, µ, ca, τ0} is

(1.3) vi =

4∑
j=1

eij(xj − x̂j)/x̂j

where the values of eij are listed in Table 1. Also listed in Table 1 are the values of the probability
maximizing parameters and of the scale parameters σi in equation 1.2. Only the parameter set
{β, µ, ca} is needed for extrapolations. Random samples of these parameters are found by picking
random samples of the vi and then inverting equations (1.3) to find {β, µ, ca, τ0} and setting aside
the unneeded value of τ0.

Table 1. Probability Parameters

x̂i symbol β̂ µ̂ ĉa τ̂0
x̂i value 0.518 0.068 0.371 -0.020
σi 1.748 0.194 0.132 0.008
φi 1.717 0.147 0.131 0.008

e1j -0.0007 0.0453 0.1057 0.9934
e2j 0.2411 -0.9049 0.3507 0.0041
e3j -0.1660 -0.3917 -0.8979 0.1133
e4j 0.9562 0.1602 -0.2442 0.0194

Transients ĉs ĉv ĉe
parameters 0.442 1.050 1.076

The values of σi in Table 1 are suitable for approximating P4 near its maximum probability point.
As described in Appendix A, an approximation over a broader range of parameters uses the values
of σi to sample each principal component, computes the exact value of P4 for each such sample,
and then fits the result with normal distributions with scale parameters equal to the values of φi
listed in Table 1.
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2. Correlations

Results for 400 random samples using the values of φ listed in Table 1 are shown in Figures 1a,
1b, and 2. For these figures, values for µ and β have been used to find values for cth = 1/(βµ) in
order to make a more direct connection with the parameters appearing in the global heat balance
equation 1.1. Also shown in these figures are large points for the maximum probability values listed
in Table 1, along with linear regression fits between the ordinate and abscissa on each graph.

Values of climate sensitivity β have a positive correlation with the tropospheric aerosol efficacy ca.
Since the tropospheric aerosol forcing Fa is negative, increasing ca decreases the radiative forcing,
so a larger climate sensitivity is needed to maintain the observed temperature growth response τ ′

to the radiative forcing.
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Figure 1. Random samples (small dots), maximum probability values (large dots) and linear
regression line from the trivalent normal approximation for (a) {β, ca} and (b) {β, cth}.

Figure 2. Two views of the same 100 random samples drawn of global heat balance equation
parameters (small dots), and maximum probability values (large dots).

There is also a positive correlation of β with the thermal inertia parameter cth. With the value ĉa of
tropospheric aerosol shielding listed in Table 1, with increases in volcanic shielding over the prein-
dustrial average removed as done here, total radiative forcing grew approximately exponentially
after about 1906 (c.f. Figure 2a of CAGER4). If the radiative forcing is approximated as growing
exponentially at a rate ν, then it can be shown that the temperature response is proportional to
1/(νcth + β−1). In that case, larger values of β mean smaller values of β−1 and thus larger values
of cth to keep 1/(νcth + β−1) constant. Then using transient corrected historical global average
temperature data alone, there is no upper limit on β and cth as long as (νcth+β−1) is kept constant.
With this observation in mind, data on the global earth energy imbalance was included here to
limit the range of the upside tail in sampled values of cth that is apparent in Figure 1a.
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Figure 2 shows two views of triplets from the same samples used to produce Figures 1a and 1b.
The view on the left in Figure 2 shows that the samples cluster around a plane, with a rise in the
direction of increasing ca. The view on the right in Figure 2 points out the increase in β with
increasing cth that is evident in Figure 1b.

3. Extrapolations of Global Average Temperature

This section presents two ways of looking at results of extrapolative solutions of the global heat
balance equation (1.1).
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Figure 3.Figure 3.Figure 3. (a) Multipliers of extrapolated global anthropogenic atmospheric carbon emissions, and
(b) corresponding evolutions of total radiative forcing.
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Figure 4.Figure 4.Figure 4. Increase of global average temperature from 2019 using ten random samples from trivalent
normal approximation P3 with (a) the 0, 2/3 and full Green Deal radiative forcing from Figure 3b,
and (b) for the 1/3 Green Deal and Soft Green Deal cases shown in Figure 3b.

Figures 3a and 3b repeat extrapolations of global carbon emissions multipliers and total radiative
forcing for five cases described in report CAGER5. Figures 4a and 4b show extrapolations of
the increase in global average temperature for ten random samples of the heat balance equation
parameters, for each of the five cases with total radiative forcing plotted in Figure 3b. The procedure
for choosing random samples of the heat balance equation parameters is described in Appendix A.
Figures 5a and 5b show cumulative probability distributions for the increases in global average
temperature over year 2019 for years 2100 and 2060 respectively. The large dots in Figures 5a
and 5b bracket the 90% and 50% confidence regions and show the median results.
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By 2060, the emissions limitations assumptions shown in Figure 3a have begun to separate
the total radiative forcing amongst the different cases. However, the previous cumulative carbon
emissions have left a legacy of atmospheric carbon accumulation that is only beginning to transport
out of the atmosphere. By 2100, however, there are substantial differences in the outcomes for the
results labelled 0, 1/3, 2/3, and 1 in Figure 5a.
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Figure 5.Figure 5.Figure 5. Cumulative probability distribution from the five radiative forcing evolutions in Figure 3b
for global average temperature increase and (large dots) 90%, 50%, and 0% confidence regions
(a) from 2019 to 2100, and (b) from 2019 to 2060.

Appendix A. Probability Distributions and Extrapolation Methods

A.1. Probability Distribution Fits. Following CAGER4, define

(A.1) P7 =

∫ ∞
0

dστ

∫ ∞
0

dσE∗

∫ ∞
0

dσoutP/(στσE∗σout)

Then define P4 as the value of P7 evaluated at the probability maximizing values cs = ĉs, cv = ĉv,

and ce = ĉe, with P = PτPE where Pτ = (2πσ2τ )−nτ/2e−((1/2)εεετ ·εεετ/σ
2
τ ) and

(A.2) PE = (2πσ2E∗)
−nE∗/2e−((1/2)εεεE∗·εεεE∗/σ

2
E∗)(2πσ2out)

−1/2e−((1/2)ε
2
out/σ

2
out)

The denominator in the expression for P4 is taken impose an uninformative prior probability on
the integration parameters [3]. Here εεετ is a vector of nτ = 74 values of τG+τH−τG+τ0−∆τvs−τ .
The transient-adjusted global average temperature data are τG = τGISTEMP − csτsolar − cvτvolc −
ceτENSO, where τGISTEMP [4] is a list of temperature input data and τsolar, τvolc, and τENSO are
transient temperature changes as defined in CAGER3. Other parameters in εεετ are τH = 0.82◦C,
τG = 0.421◦C, and a0 = τ0 −∆τvs with ∆τvs = −0.018◦C. The 74 values of τ used are

(A.3) τk =

Fk(1− κ)/µ+

i−j∑
j=2

κ2e(k−j)µFj

 /cth

for years 1946–2019, with κ = (1− e−µ)/µ and cth− 1/(βµ). The radiative forcing values of Fk for
those years are the sums F = Fna + caFa, where the tropospheric aerosol forcing Fa and the other
contributions Fna contributions to radiative forcing are as described in CAGER1 and CAGER2.
The vector εεεE∗ is a list of nE∗ = 26 values of cEE

′
th − cthτ ′ with E′th computed from differences

in global stored energy for years 1991–2018 [7], with the exception of E′th from the difference for
2001 and 2002 being used to compute εout. The constant cE = 0.62 (W/m2)yr/ZJ. Maximizing∫∞
0 dστ

∫∞
0 dσE∗

∫∞
0 dσoutP (στσE∗σout) with respect to {β, µ, ca, τ0, cs, cv, ce} gives the values of

those parameters listed in Table 1.
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To obtain a first approximation to a functional fit to P4, it is convenient to make linear transfor-
mations that rescale the variables to be non-dimensional and shift their zero values to the locations
that maximize P4. The new variables are β0 = (β − β̂)/β̂, µ0 = (µ− µ̂)/µ̂, ca0 = (ca − ĉa)/ĉa, and
t00 = (τ0 − τ̂0)/τ̂0. Using the identity [3],

(A.4)

∫ ∞
0

x−(p+1)e−ax
−2
dx = (1/2)a−(p/2)Γ(p/2)

where Γ(a) =
∫∞
0 ta−1e−tdt, the function lnP4 is a constant plus

(A.5) L0 = (nτ/2) ln(εεετ · εεετ ) + (nE/2) ln(εεεE · εεεE) + (1/2) ln(e2out)

with the substitutions β = β̂(1 + β0), µ = µ̂(1 + µ0), ca = ĉa(1 + ca0), τ0 = τ̂00(1 + t0)
made in the above descriptions of εεετ , εεεE∗ and εout. Letting v4 = {β0, µ0, ca0, t0}, the 4 × 4
(Hessian) matrix of the second derivatives of L0 evaluated at v4 = {0, 0, 0, 0} has components
Hij = d(dL0/dvi)/dvj)|v4={0,0,0,0}. The entries eij in Table 1 are the components of the eigenvec-
tors of the inverse of H. The values of σi in Table 1 are the square roots of the eigenvalues of the
inverse of H.
The function

(A.6) Ppc = ((2π)2σ1σ2σ3σ4)
−1e−(1/2)

∑4
i=1(vi/σi)

2

is an approximation to P4 in the neighborhood of the maximum probability values of the arguments
of P4. The vectors vi are known as principal components. Finding an approximation to P4 over a
wider range of its arguments starts with choosing 400 random samples of each of the components
of vi. Then the set of equations vi =

∑4
j=1 eijxj is inverted to give results for the xi, and the

exact expression for P4 is computed for each set of 400 samples. A least squares fit to the same
functional form as in equation A.4 results in the parameters φi instead of σi, as listed in the first
row of numbers in Table 2.

A.1.1. Integration over cs, cv, and ce as Nuisance Parameters. The results shown above used
the probabilities evaluated at the probability maximizing values of cs, cv, and ce listed in Table 1.
A more computationally intensive approach is to integrate P7 over cs, cv, and ce treated as nuisance
parameters. The ranges of cs, cv, and ce covered during the numerical integration are 0.15 < cs <
1.2, 0.5 < cv < 1.5, and 0.5 < cv < 1.5. This region chosen to cover the region of appreciable
probability while avoiding regions of space with extremely small probability. (An alternative is to
integrate over cs analytically and over the other two variables numerically, but this results in a
very complicated expression for the analytic integral.) Parameters of quadrivalent normal fits to
the result are shown in the second row of numbers in Table 2.

Table 2. Quadrivalent Normal Probability Parameters φi

Principal Component 1 2 3 4
Fixed Transient Parameters 1.717 0.147 0.131 0.0081
Integrated over Transient Parameters 1.782 0.150 0.145 0.0086

A.1.2. Non-normal Distribution for v2. The scale parameters φi and σi in Table 1 are similar for
each i, with the largest fractional difference being between φ2 and σ2. That observation suggested
examining an alternative to the normal distribution approximation for v2. A slightly more accurate

fit to the exact probability results as a replacement for (2π)−1/2e−(1/2)(v2/φ2)
2

is

(A.7) p2 = h2e
−((v2−ξ2)/ρ2)2)κ2/2

with parameters listed in Table 3.
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Table 3. Alternative with Kurtosis for p2

Parameter h2 ξ2 ρ2 κ2
Fixed Transient Parameters 2.795 -0.0097 0.2009 2.808
Integrated over Transient Parameters 2.732 -0.0059 0.2056 2.791

A.1.3. Skew Normal Alternative for v3. A slightly more accurate fit to the exact probability results

as a replacement for (2π)−1/2e−(1/2)(v3/φ3)
2

is the skew normal function

(A.8) p3 = h3e
−(1/2)(v3−ξ3)/ρ3)2Erf[1 + α3(v3 − ξ3)/ρ3]

with parameters listed in Table 4.

Table 4. p3 Skew Normal Function

Parameter h3 ξ3 ρ3 α3

Fixed Transient Parameters 2.480 -0.0081 0.1608 0.7141
Integrated over Transient Parameters 2.441 -0.0770 0.1634 0.5056

A.2. Comparing Extrapolations with Different Probability Function Approximations.
Table 5 compares points on cumulative probability distributions for temperature increase from
2019 to 2100 as in Figure 5a, using sampling from four different approximations to the probability
function P4 for fixed values of the transient correction multipliers and four approximations for
integration of P7 over those parameters.

Table 5. 2019–2100 ◦C Change Confidence Limits

Confidence Level 5% 25% 50% 75% 95%
Fixed Transient Parameters
Quadrivalent Normal 1.58 1.66 1.72 1.78 1.87
With p2 Alternative 1.56 1.66 1.71 1.77 1.87
With p3 Alternative 1.53 1.66 1.72 1.79 1.89
With p2 and p3 Alternatives 1.53 1.66 1.71 1.78 1.87
Integrated over Transient Parameters
Quadrivalent Normal 1.52 1.66 1.72 1.78 1.98
With p2 Alternative 1.54 1.66 1.71 1.78 1.89
With p3 Alternative 1.57 1.66 1.72 1.77 1.83
With p2 and p3 Alternatives 1.59 1.66 1.72 1.76 1.82

Users of these results can choose whichever approximation to the probability distribution that suits
their needs. For subsequent CAGE reports, the simplest to calibrate and sample is the quadrivalent
normal approximation with fixed transient parameters, which leads to the first row of numbers in
Table 6. The approximation that is most elaborate but is more complicated to calibrate and
sample gives the last row of numbers in Table 6. For subsequent work for CAGE where probability
distribution sampling may be required, the use of the simpler quadrivalent normal approximation
with fixed transient parameters is planned.

A.2.1. Trivalent Normal vs. Quadrivalent Normal Approximation Results. That the value of the
scale parameter listed in Table 2 for fourth principal component is so much smaller than the other
three is an indication that a reasonably accurate trivalent normal approximation to the probability
distribution can be found. That is done by setting v4 = 0 to find coefficients
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{r1, r2, r3} = −{e41, e42, e43}/e44 of the approximation x4 = r1x1 + r2x2 + r3x3. Using this re-

sult to eliminate x4 from the set of equations vi =
∑4

j=1 eijxj for i = 1 . . . 4 gives a result of

the form wi =
∑3

j=1Mijxj for i = 1 . . . 3. A trivalent normal function of the wi does provide a
reasonably good approximation. However, the slight reduction in the number of samples needed
would come at the cost of some loss in accuracy and a more complicated procedure for updating
the calibration against observational data.

A.3. Sampling. Values of random samples of the components of vi are
√

2σi ErfInverse(2R − 1),
where R is a random number between 0 and 1 and ErfInverse(z) is solution for x of z = Erf(x).
For each of the resulting components of v4, finding the corresponding values of {β, µ, ca, τ0} and
using those to compute the corresponding values of P4i for i = 1 . . . 4 is straightforward.

The cumulative integral of p2 to be used for finding random samples is

(A.9)

∫ x

−∞
p2 dx = (s+ 1− sQ2)/2

with Q2 = Q(κ−12 , (x − ξ2)s/ρ), and s = Sign(x − ξ2). The function Sign as used here takes on
the value -1 for negative arguments and the value +1 for non-negative arguments. The regular-
ized incomplete gamma function is Q(a, z) = Γ(a, z)/Γ(a, 0). The incomplete gamma function is
Γ(a, z) =

∫∞
z ta−1e−tdt. Random samples of v2 are given by

(A.10) ξ2 + sRρ InverseRegularizedGamma(κ−12 , 1− (2R− 1)sR)

where sR = Sign(2R − 1) and R is a random number between 0 and 1. The solution for z of the
equation r = Q(a, z) is the function InverseRegularizedGamma(a, r).

The skew normal function also has analytic cumulative probability function that can be expressed
as a sum of special functions available in some software packages. Inverting and sampling the
resulting expression appears also to be more trouble than it is worth to avoid using numerical
integration procedures. That is because the required integrals described here can also be computed
numerically and the sampling equations solved numerically as done for Figure 4b, but various
software platforms have built-in procedures or functions that avoid a need for numerical integrations
or solution searches. A similar procedure can be used if available software has a built-in function
inverse skew normal calculator.

However, a simple and sufficiently efficient procedure used herein for sampling non-normal distri-
bution function approximations is to interpolate the cumulative distributions computed numerically
and solve for the values of the argument of the cumulative distribution that gives results equal to
a set of random numbers each between 0 and 1.

A.4. Temperature Extrapolation Methods. The global heat balance equation is integrated
numerically, from an initial condition as a continuous function of time. The differential equation
solved is cthdτ/dt = Fna + caFa − τ/β. The initial conditions are the analytic solutions integrated
from τ = 0 in 1750. The resulting value of τ for 2019 is computed using the values of {β, µ, ca}
for each sample. Both the initial conditions in 2019 and the extrapolated results for any specified
evolution of radiative forcing are completely determined by each set of {β, µ, ca}.
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